Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Audel electrical course for apprentices and journeymen - Rosenberg P.

Rosenberg P. Audel electrical course for apprentices and journeymen - Wiley & sons , 2004. - 424 p.
ISBN: 0-764-54200-1 Previous << 1 .. 57 58 59 60 61 62 < 63 > 64 65 66 67 68 69 .. 97 >> Next Two-Phase Systems
Figure 23-1 illustrates two alternators, namely, No. 1 and No. 2. For this explanation, envision both alternators connected to the same shaft, so that their windings are 90 electrical degrees apart. A voltage of 100 volts has been selected for the output voltage of each alternator.
Figure 23-1 Two-phase system.
In Figure 23-2 the two alternator windings are illustrated 90° out of phase. There are two methods of two-phase transmission: One is four-wire and the other three-wire. For three-wire transmission, B1 and B2 are connected together, forming B for one conductor, and A and C as the other two conductors.
255
256 Chapter 23
Figure 23-2 Two-phase windings 90° apart.
This three-wire connection gives 100 volts between B and C, 100 volts between A and B, and 141 volts between A and C. This is shown by the vector diagram in Figure 23-3. Here E1 is 100 volts and E2 is 100 volts. These two voltages are 90° out of phase, so the diagonal line E will be 100 X V2 = 100 X 1.41 = 141 volts between A and C in Figure 23-2.
Figure 23-3 Vector diagram of two-phase voltages.
With four-wire two-phase, there would be two 100-volt circuits with no connection between them, as illustrated in Figure 23-4. Windings A and B are not connected together. Winding A supplies
Polyphase Circuits 257
Figure 23-4 Two-phase four-wire system.
conductors C and D. Winding B supplies conductors E and F. The two circuits are 90° out of phase.
Three-Phase Systems
Three-phase could be considered similar to two-phase, namely, three one-phase alternators connected to one shaft so that each alternator is in turn 120° out of phase with the preceding alternator. To be more practical, a single alternator has three windings on the stator or rotor, as the case may be. These windings are connected so that they are 120° apart. They may be connected either wye or delta. Figure 23-5A illustrates a wye connection. The three phases are A, B, and C, with all windings connected at a common point X. Figure 23-5B illustrates a delta connection. The three phases, A-B, B-C, and C-A, connect as shown in this illustration.
Single-phase alternators with distributed windings will have less output than with concentrated windings. The reason for this is that part of the voltage is obtained at a disadvantage due to the various phase angles between the sections of the windings. To correct this, if the sections could be made to deliver their voltages independently, a closer approximation to the arithmetic sums of their separate voltages could be more nearly obtained.
258 Chapter 23
A
C
C
A
(A) Wye connection.
(B) Delta connection.
Figure 23-5 Common three-phase connections.
Figure 23-6 shows a three-phase alternator winding connected in wye as shown in Figure 23-5A. The windings are 60° apart, but if they are connected in separate circuits as shown in Figure 23-6, a great gain is affected. Conductor E is in series with conductor F, which is 180° away from E. Conductor G, 60° away from E, is in series with H, which is 60° away from F. Conductor I is in series with conductor K and is 60° away from G.
Assuming that the six conductors were brought out to three separate circuits, a voltage output such as in Figure 23-7 would be the result. For the purpose of economy, it is desirable to combine these into one circuit, with three conductors instead of six conductors.
B'
Figure 23-6 Three-phase alternator winding-connected wye.
L
Polyphase Circuits 259
Figure 23-7 Three emfs 60° apart.
The most economical winding is the placing of conductors 60° apart, as shown in Figure 23-6.
It is then possible to connect these windings so as to deliver voltages 120° apart as shown in Figure 23-8. Points E, I, and H in Figure 23-6 are 120° apart in phase and are brought out to a common point, L. The other ends of E, I, and H, namely, G, F, and K, are likewise 120° apart and lead to the external circuit fed by A1, B1, and C1.
B
/ \ / a X "AA'A . A /'
' X ' _A\ J f \ * * \ ' tx
Figure 23-8 Three emfs 120° apart in phase.
This connection actually reverses winding G-H in relation to windings E-F and I-K. Thus the results are a wye connection as illustrated in Figure 23-5A, and sine waves as illustrated in
260 Chapter 23
Figure 23-8, in which it may be observed that there is an equal current in both directions at the same time.
If winding G-H had not been reversed, sine waves as illustrated in Figure 23-7 would have resulted. There is no balance and the economy wouldn’t be as good as that obtained in Figure 23-8. This results in a saving in copper.
Figure 23-9 graphically shows what happens when one phase of a three-phase alternator is reversed, to obtain sine waves as in Figure 23-8 instead of those shown in Figure 23-7.
Figure 23-9 Reversal of one phase to alter the 60° relation of the phases to 120°.
Phases A, B, and C are 60° apart. This would give sine waves as in Figure 23-7 and an unbalanced current and voltage relationship. By taking OB and reversing it to OD, this places all phases in a 120° relationship. Previous << 1 .. 57 58 59 60 61 62 < 63 > 64 65 66 67 68 69 .. 97 >> Next 