Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Download (direct link): elementarydifferentialequations2001.pdf
Previous << 1 .. 396 397 398 399 400 401 < 402 > 403 404 405 406 407 408 .. 609 >> Next

14. fx(x) = ex 15. fx(x) = (1 x2)1/2
16. a2^' + (X *)^ = 0, T" + cT' + XT = 0
17. (a) s (x) = ex (b) Xn = n2n2, (x) = ex sin nn x; n = 1, 2, 3,...
18. Positive eigenvaluesX = Xn, where ,jX~n satisfies \/X = tan3\/XL; corresponding eigenfunctions are (x) = e2x sin 3^/X-x. If L = 2 ,X0 = 0 is eigenvalue, 0(x) = xe2x
is eigenfunction; if L = 2 ,X = 0 is not eigenvalue. If L < i, there are no negative eigenvalues; if L > 2, there is one negative eigenvalue X = /2, where is a root of = 3 tanh 3 L; corresponding eigenfunction is _ 1 (x) = e2x sinh 3^x.
19. No real eigenvalues.
20. Only eigenvalue is X = 0; eigenfunction is (x) = x 1.
21. (a) 2 sin VX \/X cosVX = 0; X1 = 18.2738, X2 = 57.7075 (b) 2 sinh^/ coshy^ = 0, = X; X_ 1 = 3.6673
732
Answers to Problems
See SSM for 24. (a) Xn = /4, where in is a root of sin /.iL sinh /.iL = 0, hence Xn = (nn/L)4;
detailed solutions X1 = 97.409/L4, (x) = sin(nnx/L)
to 24 b (b) Xn = /4, where in is a root of sin iL cosh iL cos L sinh L = 0;
, sin i x sinh i L sin i L sinh i x
X, = 237.72/L , = -----------^^
1 sinh inL
(x) =
(c) Xn = /4, where in is a root of 1 + cosh iL cos iL = 0; X1 = 12.362/L4,
[(sin inx sinh inx)(cos inL + cosh inL) + (sin inL + sinh inL )(cosh inx cos inx)]
cos inL + cosh inL
25. (c) (x) = sinyX"nx, where Xn satisfies cos .JX, L ^X, L sin^JX, L = 0;
X1 = 1.1597/L2, X2 = 13.276/L2
Section 11.2, page 639
1. (x) = \/^( 2)nx; n = 1, 2,...
1,3,5 2. (x) = ^/0cos(n 1 )nx; n = 1, 2,...
3. ,^) = 1, (x) = V^cosnnx; n = 1, 2,...
V! cos V^n x - - -
4. (x) = (1 + sin2 yX^)1/2 , where Xn satisfies coVXn -VXn sinVXn = 0
2\/0
5. (x) = v/0 e* sin nnx; n = 1, 2,... 6. a = -------------; n = 1, 2,...
n ^ n 1 n (2n - 1)n
^VK1)n1
7,10,14,17,21a 7. an = ^------:; n = 12-..
(2n - 1) n 2 /2
8. a =------------{1 cos[(2n 1)n/4]}; n = 1, 2,...
n (2n - 1 )n
2V0sin(n - 1 )(n/2)
9. an =------------1 2 2--------; n = 1, 2,...
n (n - 1 )2n 2
In Problems 10 through 13, = (1 + sin2 ^X,)1/2 and cos , ^X, sin , = 0.
cos ^X~ - 1) _
Xnn
sin^/2) _
10. a - sin Jx~ : 1,2,... 11.
---7=^---; n =
n jXn
12. a (1 - cos^X) n = 1, 2,... 13.
n X
nn
14. Not self-adjoint 15.
16. Not self-adjoint 17.
18. Self-adjoint
21. (a) If a2 = 0 or b2 = 0, then the corresponding b
25. (a) X1 = n /L ; 1 (x) = sin(nx/L)
(b) X , = (4.4934)2/L2; 1(x) = sin^X x-
(c) X1 = (2n )2/L2; 1 (x) = 1 --- cos(2n x / L)
26. X1 = n 2/4L2; 1(x) = : 1 --- cos(n x /2 L)
, n = 1, 2,..
Xn
n = 1, 2,...
21 be, 23abc, 24 25bc
Section 11.3, page 651
1 ^ (-1)n+1sinnnx ^ (-1)n+1sin(n - 1 )nx
1 y = 2 (2n2 .w 2 y = 2L
^ (n2n2 - 2)nn ^ [(n - 2)2n2 - 2](n - 1 )2n2
n
Answers to Problems
733
See SSM for detailed solutions to 3, 5, 8
10, 11, 12, 14, 18
19, 22
24,28a
28bcd
30bcd
30e
cos(2n 1)x
TO
3. y=-------------4^
4 -To [(2n 1)22 2](2n 1)22
Previous << 1 .. 396 397 398 399 400 401 < 402 > 403 404 405 406 407 408 .. 609 >> Next