Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Download (direct link): elementarydifferentialequations2001.pdf
Previous << 1 .. 395 396 397 398 399 400 < 401 > 402 403 404 405 406 407 .. 609 >> Next

(1) 2/b fb n— y (2) 2/a fa n— x
c(1) = --------------- I f (y) sin-------- dy, c(2) = ------------------- I h(x) sin-------- dx
sinh(n— a/b) J0 b sinh(n— b/a) J0 a
(1) 2 (2) 2 (n2—2 - 2) cos n— + 2
n— sinh(n— a/b) n n3—3 sinh(n— b/a)
c_0 TO
2
(b) c(1) = ---------- --------- c(2) = -
n— sinh( r,-o/h), n „3^3
5. u(r, โ) = — + Xr-n(cn cos n6 + kn sinn0);
2 n=1
„n f2— 0n f2—
a“ f an f
c = — I f (โ) cos ne de, k = — I f (โ) sinne de
n -Jo n — Jo
n 2
‘ sin ne, c =
, n —a“ J0
n=1 ฐ 0
4 cos n— 1
(b) cn = ----------f-------
nn
— J0 — J0
TO 2 f
6. (a) u(r,e) ^ำ c rn sin ne, c =—- I f (โ) sin ne de
n 1 n n —an 0
— a n
TO n—โ รเ n—โ
7. u(r, โ) = V c rn-/เ sin-, c = (2/เ)a-n-/เ f (โ) sin---de
n 1 n เ n 0 เ
n=1
n— y/a n— x 2 fa n— x
8. (a) u(x, y) =} c e-n—y/a sin-------------------, c = - f (x) sin------------- dx
n a n a Jn a
4a2
(b) cn = —็—็ (1 — cos n—) (c) y0 = 6.6315
b
n— x n—y 2/n— f n—y
00 (b> u(x,y) = c0 + n=ฐ cn cosh — coS —, cn = sinh-— a/b) ณ f (y) cos ~ dy
11. u(r,e) = c0 + E rn (cn cos ne + kn sin ne),
n=1
1 f2— 1 f2—
c = ---------— g(e) cos ne de, k = -----------------------— g(e) sin nโ de;
n— an 1 J0 n— an 1 J0
r 2—
ition is
0
necessary condition is g(e) de = 0.
Answers to Problems
731
See SSM for detailed solutions to 13a
CHAPTER 11
2, 4, 5, 9
10, 11ab
13, 18a, 20
22abcd, 23
nn x nny 2/a fa nn x
12. (a) u(x, y) = ำ c sin----------cosh-----, c = -------------------- I g(x) sin------ dx
W 7 n a a n cosh(nn b/a)J0S a
n= 1
4a sin(nn/2)
(b) cn = —^-----------------------
n n cosh(nn b/a)
(2n — 1)n x (2n — 1)n y
13. (a) u(x, y) = c sinh------------------------sin---------------,
n 2b 2b
ฯ= 1
2/b f b (2n — 1)n y
f
0
f (y) sin-------------------- dy
n sinh[(2n — 1)na/2b] J0 2b
32b2
(b) cn =----------773 3----------
(2n — 1) n3 sinh[(2n — 1)na/2b] cos
co y 1 nn x . u nn y
2 fa 2/a fa nn x
co = Til g(x 1 dx cn = sinh(nn b/a) ณ g(x) COs — dx
nn
14. (a) u(x, y) = ——+ ำ c cos-sinh-
2 •“ a a
n= 1
24a4(1 + cos nn) b\ 30/’ n n4n4 sinh(nn b/a)
(b) co = 7 1 + ™
Section 11.1, page 626
1. Homogeneous 2. Nonhomogeneous 3. Nonhomogeneous
4. Homogeneous 5. Nonhomogeneous 6. Homogeneous
7. ๔๏(x) = sin yX-x, where satisfies = — tan n;
X1 = 0.6204, X2 = 2.7943, Xn = (2n — 1)2/4 for large n
8. ๔๏(x) = cos x, where satisfies *JX = cot vX
X1 = 0.7402, X2 = 11.7349, Xn = (n — 1)2n2 for large n
9. ๔๏(x) = sin tJX~x + tJX~cos ^/X-x, where ^/X- satisfies
(X — 1) smVI — 2\pX cos \/X = 0;
X1 = 1.7071, X2 = 13.4924, Xn = (n — 1)2n2 for large n
10. X0 = 0; ๔^) = 1 — x
For n = 1, 2, 3,...,๔ (x) = sin ไ x — ไ cos ไ x and X = — ไ^, where ไ satisfies ไ = tan ไ.
X1 = —20.1907, X2 = —59.6795, Xn = — (2n + 1)2n2/4 for large n
2
12. /u(x) = e x 13. p,(x) = 1 /x
Previous << 1 .. 395 396 397 398 399 400 < 401 > 402 403 404 405 406 407 .. 609 >> Next