Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Download (direct link): elementarydifferentialequations2001.pdf
Previous << 1 .. 384 385 386 387 388 389 < 390 > 391 392 393 394 395 396 .. 609 >> Next

1 ' + 1
2 + 1 3
- f 1 - 1
\-1 '- 1
\ 6 3
-----
2
2t
21 + 31
2t 1 3t
2 + 1 3
- f t + 1 -2 4 t - 1 -21 1 1 - 1 -21
1 1 - -21 + 1 3\
21 - 2 -1 - 1 21/
12
12
-2 + -21 + 31
1 1 +
+ 2 31
12. x =
/ -2 3/2
-1 sin2t
Section 7.8, page 407
1. x = C^2) ^ + C2
3 x = 1 ] -' + C2
4. x = 7 + C
2. x = 2) + c2
5. x = C1 ^ 4j t + c2 ^ 1 2t +
6. x = c1 I 1 j 21 + c2 I 0 j -1 + Cf I 1 I
1 j 21 + |o j 21


Answers to Problems
713
See SSM for detailed solutions to 9 11, 12, 14
15, 17a
17bcd
17ef
-33 -6 1
12. x = - 1 e-t/2 + - I 5 I e
-7t/2
13. x = cA J t + c2
14. x = c1 ( 1 ) f 3 + c2
t-3ln t -( 0) t-3
16. (b)
^ e-'/2 +
4)^"2+(21e-'/2-
17. (b) x(1) (t) =
(c) x(2)(t) =
(d) x(3)(f) =
e2t
1
te2t + ^1j e2t
(t2/2)e2t + |l j te2t + |oj e2t
( 0 1 t + 2 \
(e) V(t) = e2t 1 t +1 (I2/2) + t
- 1 -t -(t2/2) + 3yl
/ 0 1 2 -3 3 2
(f) T = 1 1 0 , T-1 = 3 -2 -2
- 1 0 3 -1 1 1
J =
/2 1 0\
0 2 1
v0 0 2/
4
714
Answers to Problems
See SSM for detailed solutions to19abc
19d
1,2
3
4
18. (a) x(1)(t) = ^0j et (3)(t) -
(d) x(3)(t) =
1
(e) W(t) = 1 0
4t
1
or et 0
2t
4t
(f) T =
J
^2 -3 -2t - 1
2 0\
4 0
2 2 2t 1
19. (a) J2 =
1
0
2 -2 -1
/1 0 0\
0 1 1
(0 0 1
X2 2X
0 X:
T-1
J3
(1 -1/2
0 1/4
2 -3/2 -1
0
0
X3 3X2
0 X3
J4
X4 4X
0 X4
(c) exp (Jt) = eXt
1t 0 1
(d) x = exp(Jt)x0
20. (c) exp(Jt) = eXt
(1 0 0\ 0 1 t
V0 0 1
21. (c)exp(Jt) = eXt
(1 t t2/2^
0 1 t
V0 0 1 /
Section 7.9, page 417
1 x=c^0et+c2(3)e-t+3 (0tet -1 (3)et+(0t - (1
2. x c
1
2 I -S) e 2t - ^/
2/3 '' + e-'
3. x = 1 (2t - sin2f - cos2f + c1) ( 5cosf j 5V 2 2 1 \2 cos t + sin t)
+ (-1 - 1 sm 2t + 3 cos 2t + c2) ^- cos52 sin t) ( ) (1) 2t (0) -2t 1 (1) t
4 x = (-4)e-3t + MUe2t- e~ + 2U1 e'
5. x = cM2) + c2
c1 12
-2
c2 1
-5t
7. x = c^j e3' + cJ- e-' + 1 M) '
2
Answers to Problems
715
See SSM for detailed solutions to 12, 14
CHAPTER 8
1ac, 5ac, 7ac
x = c I 1 + c2 ( 1 ) f + (M + 2 I1 )
41/ ^ 2\/ \0j T \1
cuD-|/2+c^_1
9. x = cJM -|/2 + cJ_M -21 + f j f - 15 ) + ( 6 1
2/ \ 4 / V2
4 W 3 \2 -V^ -1 -^2
11. x = (2 sin2 t + c1) ( 5cost \ + (- 1 t - 2 sin t cos t + c2) 5 sin f ^
V2 1 ^2 cos t + sin t) v 2 2 2 \- cos t + 2 sin t)
12. x = rln(sin t) - ln( cos t) - 21 + c,l ( 5cost j
L5 v 7 v 75 1J\2cosf + sin t)
+ [2ln(sin t) - 51 + c2] 5 sin ^ ^
L5 v J 5 2 \- cos t + 2 sin t)
/ e-f/2COS11 e-f/2sin1 A tn ( sin11
13. (a) W(t) = /2 1 2 (b) x = -(/ 2 ,
4 sin11 -4 f/2cos1ty \4 - 4cos21
14. x = c1 (1) f + c2 (f) f-1 - (2) + 1 (f) f - Q f ln f- 1 (4) 12
15.x=c1 (2)f2+c2 (2)t-1+(2)f+10 (1)f4 -1 (2
Section 8.1, page 427
1. (a) 1.1975, 1.38549, 1.56491, 1.73658
(b) 1.19631, 1.38335, 1.56200, 1.73308
Previous << 1 .. 384 385 386 387 388 389 < 390 > 391 392 393 394 395 396 .. 609 >> Next