Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Download (direct link): elementarydifferentialequations2001.pdf
Previous << 1 .. 380 381 382 383 384 385 < 386 > 387 388 389 390 391 392 .. 609 >> Next

s n—0
F (s) — - (e—s + 2e — 6e—4s) s
s\ / „2
] 12. F (s) — (1 — e—s )/s2
14. f(t) — 1 u2(t)[et—2 — e—2(t—2)]
16. f (t) — u2(t) sinh2(t — 2)
18.
f (t) — u1(t) + u2(t) — u3(t) — u4(t)
cos t
21. f (t) — 1 e 23. f(t) — 1 et/2u2 (t/2)
--- e---3s), s > 0
e-2ns - e- -(2n+1)s ]
1/s s > 0


1e
(2n+2)s
s(1 + e—s)
s > 0
29. ?{ f(t)} —
31. L{ f(t)} —
1/s
1 + e—s
1 — (1 + s )e—s s 2(1 — e—s)
s > 0
s > 0
30. L{ f (t)} — 32. L{ f (t)} —
s > 0
34. (b) L{p(t)} —
33. (a) L{ f (t)} —s—1(1 — e—s), s > 0
(b) L{g(t)} — s—2(1 — e—s), s > 0
(c) L{h(t)} — s—2(1 — e—s)2, s > 0
Section 6.4, page 321
1. y — 1 — cos t + sin t — un/2(t)(1 — sin t)
2. y — e—* sin t + 2un(t)[1 + e~(t-lt) cos t + e—1f*-:^ sin t]
1 — e—s s(1 + e—s-1 + e—
(1 + s2 )(1 — e—n s) 1- e—s
s2(1 + e—s)
, s > 0 s > 0
— 1 u2n(t)[1 — e—(t—2n) cos t — e—(t—2n) sin t] 1
2 2n
3. ó — 6[1 — u2n(t)](2sint — sin21)
4. y — 6 (2 sin t — sin21) — 1 un(t)(2 sin t + sin21)
5. y — 1 + 2e 2* — e * — u10(t)[1 + 1 e
1 e— 2(t —10)
-(t —10)
Answers to Problems
705
See SSM for detailed solutions to 8, 10, 16bc
19abd 20,20abc
1,3, 5, 7
10
13a, b
6. ó = e-t - e-2t I u2(t)[2 - e-(t-2) I 1 e-2(t-2)]
7. ó = cos 11 u3n(t)[1 — cos(f — 3n)]
8. ó = h(t) — un/2(t)h(t — n/2), h(t) = 25(—4 + 5t + 4e-t/2cos t — 3e-t/2sin t)
9. 7 = 1 sint + 11 — 1 u6(t)[t — 6 — sin(f — 6)]
10. 7 = h(t) + un(t)h(t — n), h(t) = y7[—4 cos t + sin t + 4e-t/2 cos t + e-t/2 sin t]
11. 7 = ^(tX1 - 4 cos(2t - 2n)] - u3n(t)[i - 1 cos(2t - 6n)]
12. 7 = u1(t)h(t — 1) — u2(t)h(t — 2), h(t) = — 1 + (cos t + cosh t)/2
13. 7 = h(t) — un(t)h(t —n), h(t) = (3 — 4cost + cos2t)/12
14. f(t) = [u^(t)(t - t0) - u^+k(t)(t - t0 - k)](h/k)
15. #(t) = [utg(t)(t - t0) - 2u°^+k(t)(t - t0 - k) + u^+2k(t)(f - t0 - 2k)](h/k)
16. (b) u(t) = 4ku3/2(t)h(t - 2) - 4ku5/2(t)h(t - 5),
h(t) = 1 - (V7/84) e-t/8 sin(^V7 t/8) - 4e-t/8 cos(^v/7 t/8)
(d) k = 2.51 (e) t = 25.6773
17. (a) k = 5
(b) 7 = [u5(t)h(t - 5) - u5+k(t)h(t - 5 - k)]/k, h(t) = 41 - |sin2t
18. (b) fk(t) = [u4-k(t) - u^k(t)]/2k;
7 = [u4-k(t)h(t - 4 + k) - u4+k(t)h(t - 4 - k)]/2k,
h(t) = 4 - 4e-t/6 cos^V^43 t/6) - (v'T43'/572) e-t/6 sin(v/Ò43 t/6)
n
19. (b) 7 = 1 — cos t + 2 ^ (—1)kukn(t)[1 — cos(t — kn)]
k=1
21. (b) 7 = 1 - cos t + Y, (-1)kukn(t)[1 - cos(t - kn)]
k=1
23. (a) 7 = 1 - cos t + 2 ? (-1)ku11 (t)[1 - cos(t - 11k/4)]
k=1
Section 6.5, page 328
1. 7 = e-t cos t + e-t sin t + un(t)e-(t—) sin(t - n)
2. 7 = 1 un(t) sin2(t — n) — 1 u2n(t) sin2(t — 2n)
3. 7 = — e-2t + 1 e-t + u5(t)[-e-2(t-5) + e-(t-5)] + u10(t)[1 + 1 e-2(t-10) - e-(t-10)]
4. 7 = cosh(t) — 20u3(t) sinh(t — 3)
5. 7 = 4 sin t — 1 cos t + 1 e-t cos^2 t + (1 /^2) u3n(t)e~(t-3n) sin\/2(t — 3n)
6. 7 = 2cos2t + 1 u4n(t) sin2(t — 4n)
7. 7 = sin t + u2n(t)sin(t — 2n)
8. 7 = un/4(t) sin2(t - n/4)
9. 7 = un/2(t)[1 - cos(t - n/2)] + 3u3n/2(t) sin(t - 3n/2) - u2n(t)[1 - cos(t - 2n)]
10. 7 = (1/V^) un/6(t) exp[-1 (t - n/6)] sin(V31/4)(t - n/6)
11. 7 = 5 cos t + 5 sin t - 1 e-t cos t - 3e-t sin t + un/2(t)e-(t-7t/2) sin(t - n/2)
12. 7 = u1(t)[sinh(t — 1) — sin(t — 1)]/2
13. (a) -e-T/4S(t - 5 - T), T = 8ë/V45
14. (a) 7 = (4/VT5) u1(t)e-(t-1)/4 sin(vi5/4)(t - 1)
(b) t1 = 2.3613, y1 = 0.71153
(c) 7 = (8^7/21) u1 (t)e-(t-1)/8 sin(3 V7/8) (t - 1); t1 = 2.4569, y1 = 0.83351
(d) t1 = 1 + n/2 = 2.5708, y1 = 1
15. (a) k1 = 2.8108 (b) k1 = 2.3995 (c) k1 = 2
16. (a) <j)(t, k) = [u4-k(t)h(t -4 + k) - u4+k(t)h(t - 4 - k)]/2k, h(t) = 1 - cos t
(b) u4(t) sin(t — 4) (c) Yes
706
Answers to Problems
See SSM for detailed solutions to 17b
21b
25b
1c
4
8, 13, 15, 17
20
20
17. (b) ó = Y, èêë (t) sin(t — kn)
k=1
20
20
18. (b) ó =?(—1)k+f ukn(t) sin(t — kn) k=1
19. (b) Ó = E ukn/2(t) sin(t — kn/2)
k=1
20
20. (b) ó = ¨ (—1)k+1ukn/2(t) sin(t — kn/2)
k=1
21 (b) Ó = E u(2k— f)n(t) sin[t — (2k — 1)n]
k=1
40
22. (b) ó = ? (—1)k+-u11k/4(t) sin(t — llk/4)
(t—kn)/20 sin[V399(t — kn)/20]
20
23. (b) Ó = Ji?(—^+4^ 399 k=1 15
Previous << 1 .. 380 381 382 383 384 385 < 386 > 387 388 389 390 391 392 .. 609 >> Next