Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

# Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Previous << 1 .. 379 380 381 382 383 384 < 385 > 386 387 388 389 390 391 .. 609 >> Next

(1)nxn
1 y1(x) n0 n!(n + 1)!
1
y2(x)  y1 (x) ln x +
H + H
1  σ _n-n³ (1)nxn
n1 n! (n  1)!
x
1 - (1)nxn 2 ^ (1)n_n
y1(x)  E -^^2- - y2(x  y1(x) ln x  7E '
(n!)2 "2 ^ x^1 (n!)2
xn
2
703
See SSM for detailed solutions to 3, 4, 5
7, 12
ζ (___³ \n^n ζ (__- )n2n h
3. yi(x) = J2  n2 xn, Σ2(x) = yi(x)lnx  2J2--------------------------^HLxn

4. y,(x) = -E
n=0 (n!)2
ζ (1)n
n=1
(n!)2
x n=0 n! (n + 1 )!
1
y2(x) = -y,(x) lnx + x2
xn
ζ h + H 1  ? Hn+ Hf (1^
5. y,(x) = x3/2
1+
n=f n!(n  1)! (1)m
x \2m
f m! (1 + 2)(2 + 2)    (m + 3)
(2)
Σ2(Υ) = X
x3/2
1+
(1)m
=f m! (1  2 )(2  2 )   (m  3 ) V 2
*( D2
13, 14
Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3,.... For r is arbitrary.
= 2, ai _
CHAPTER 6 Section 6.1, page 298
1,2, 5b, 6, 9
13, 16, 19, 21
25,27abcd
1. Piecewise continuous 4. Piecewise continuous
2. Neither
5. (a) 1 /s2, s > 0
(b) 2/s3, s > 0
(c) n! /s
7.
9.
11.
13.
15.
17.
19.
22 s  b
s > | b|
(s  a)2  b2  b
s > 0
s  a > |b|
s2 + b2 b
(s  a)2 + b2 
1
(s  a)2
22 s + a
(s  a)2(s + a)2 2a(3s2  a2)
(s2 + a2)3 ,
s > |a|
s > 0
21. Converges 23. Diverges
3. Continuous
6. s/(s2 + a2),
¦n+l
s > 0 b
22
sb
s > | b|
10.
12.
14.
16.
18.
20.
b
(s  a)2  b2 s
s  a > |b|
s2 + b2
s > 0
(s  a)2 + b2 
2as
(s2 + a2)2
n!
(s  a)n+f, 2a(3s2 + a2) (s2  a2)3 :
s > 0
s > |a|
22. Converges
24. Converges
26. (d) Γ (3/2) = 4Λ/2; Γ (11 /2) = 945σΟ/32 Section 6.2, page 307
2, 4, 7
11, 14, 15
1. 3sin2t
3. § ft  5 e-4t 5. 2et cos2t 7. 2et cost + 3et sint 9. 2e2t cos t + 5e2t sin t 11. σ = 1 (f3t + 4e2t)
13. σ = e( sin t
2. 2tV
4. 9 e3t + 5 e2t 6. 2cosh2t  |sinh2f 8. 3  2sin2t +5cos2t
10. 2e c cos3t  3 e 1 sin3t
12. y = 2ft  f2t
14. σ = e2t  te2
15. σ = 2el cos^V! f  (2/\[Ώ)ε³ sin^v',3 t 16. σ = 2e ΄ cos2t + 2 e ΄ sin2t
s
sa
sa
s > a
s > a
s > a
s > a
0 and a3
s > 0
704
See SSM for detailed solutions to 17, 20, 22, 24
27b, 30, 32
36a,38ab 2, 4, 8
14, 21,22,27
28, 30
1
3
1―. y  tet  t2e* + 2t3e* 18. y  cosh t
19. y  cosV2 t
20. y  (a2  4)1 [(rn2  5) cos at + cos 2f]
21. y  1 (cos t  2 sin t + 4Ί* cos t  2Ί* sin t)
22. y  5 (e't  Ί* cos t + 7Ί* sin t)
s 1  en 5
24. Σ (s)  -1----2-------
s2 + 4 s(s2 + 4)
26. Σ (s)  (1  e5 )/s2(s2 + 4) 29. 1 /(s  a)2
30. 2b(3s2  b2)/(s2 + b2)3 31. n!/5
23. y  2e* + te-* + 2t2et
1 es(s + 1)
25. Σ (s)  22------------22----------
s2(s2 + 1) s2(s2 + 1)
n+1
32. n!/(s  a)
n+1
33. 2b(s  a)/[(s  a)2 + b2]2
34. [(s  a)2  b2]/[(s  a)2 + b2]2
36. (a) Σ + s2y  s (b) s2Σ" + 2sy'  [s2 + ΰ(ΰ + 1)]Σ -1
Section 6.3, page 314
7. F (s)  2es/s3 8.
eΛ s e2ns
9. F(s)  2---------------(1 + n s) 10.
F(s)  es(s2 + 2)/s3
1
2  2 s2 s2
11. F (s)  s2[(1  s)e2s  (1 + s)e3s 13. f(t)  ?3e2t 15. f (t)  2u2(t)et2cos(t  2)
17. f (t)  u 1 (t)e2(t1) cosh(t  1)
20. f(t)  2(2t)n
22. f (t)  1 et/3(e2t/3  1)
24. F(s)  s1(1  es), s > 0
25. F (s)  s1 (1  es-
26. F(s)  1[1  es +
1 Ζ
27. F(s)  - ?(1)nens 
Previous << 1 .. 379 380 381 382 383 384 < 385 > 386 387 388 389 390 391 .. 609 >> Next