Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

# Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Previous << 1 .. 378 379 380 381 382 383 < 384 > 385 386 387 388 389 390 .. 609 >> Next

y1(x) = ^ ^ + 3x + -r + ... + n!(-^ + .
10. r2 - r + 4 = 0; (n + r - 2)2an + an-2 = 0; r1 = r2 = 1/2
x2 x4 (-1)mx2 m
----I---------------L -------------------------------
22 2242 22m (m!)2
11. r2 = 0; r1 = 0, r2 = 0
y1 (x) = x1/^ 1 - -2 + -2-2--------------+ 02m, , \2 + 
, , a(a + 1) f a(a + 1)[1  2 - a(a + 1)], ^2, σ (x)  1 I---------2 (x  1)-------------------2-----2-(x  1) + 
1 2  12 (2  12)(2  22)
,/ nn+1 a(a + 1)[1  2 - a(a + 1)]  [n(n - 1) - a(a + 1)]
+ <"1) ------------------------------------------------------------------(x -1) +'
12. (a) r1 = 2, r2 = 0 at both x =±1
(b) y1(x) = |x - 1|1/2
Ζ (1)n(1 + 2a) (2n  1 + 2a)(1  2a) (2n  1  2a)
1 + g----------------------------------------------------------------------(x - 1)
-ζ (-1)n a(1 + a) (n - 1 + a)(-a)(1 - a)    (n - 1 - a)
72 ) = 1 + g---------------------------n!1 35-  (2n - 1)--------------------------(x - 1)
13. r2 = 0; r1 = 0. r2 = 0; a = 1 2k)an1
1 2 n n2
κ (Λ)(1  X) 2 (Λ)(1  X)    (n  1  X) n
y1 (x) = 1 I--------2 x I--------2----x2 I----------------------------------------------1-2-x I-
1 (1!)2 (2!)2 (n!)2
For κ = n, the coefficients of all terms past xn are zero.
16. (b) [(n  1)2  1]bn = b 2, and it is impossible to determine b2.
702
See SSM for detailed solutions to 1, 3, 9
17abc
18
20abc, 21 bd 1 2
Section 5.7, page 278
1. x--- 0; r (r --- 1) --- 0; r1 --- 1, r2 --- 0
2. x--- 0; r2 --- 3r + 2 --- 0; r1 --- 2, r2 --- 1
3. x--- 0; r (r --- 1) --- 0; r1 --- 1, r2 --- 0
x--- 1; r (r + 5) --- 0; r1 --- 0, 5
4. None

5. x--- 0; r2 + 2r --- 2 --- 0; r1 --- -1 + V3 --- 0.―32, r2
6. x--- 0; (r r1 3 2r
r --- 4 ---
1 0
443
---
;0
x--- -2 ;--- 0; r1 --- 0
4--- ---
r( ---2 r2
r(
―. x--- 0; r2 + 1 --- 0; r1 --- i, r2 --- -³
8. x--- -1 ; r2 --- 7r + 3 --- 0; r1 --- (― + V37)/2 --- 6.54
9. x--- 1; r2 + r --- 0; r1 --- 0, r 2------1
10. x--- -2 ; r2 --- (5/4)r --- 0; r1 --- 5/4, r2 --- 0
11. x--- 2; r2 --- 2r --- 0; r1 --- 2, r2 --- 0 2
x--- -2 r2 ;r 1---2 0
--- II
2 ---2 r
II
0
12. x--- 0; r2 --- (5/3)r --- 0; r1 --- 5/3, r2 --- 0
x  3; r2 - (r/3) - 1  0; r1  (1 + *Δ―)/6  1.18, r2  (1  -Δ―)/6 = 0.84― 13. (b) r1  0, r2  0
(c) Σ1(υ)  1 + X + 4 x2 + 36 x3 + 
Yi(x)  Σ1(υ) x  2x  4x2  18x3 + .
14. (b) r1  1 , r2  0 (c) y1(x)  x  4x2 + 17 x3  12 x4 + 
y2(x)  -6y1 (x) lnx + 1  33x2 + 4Px3 + 
15. (b) rj  1, r2  0
(c) y1(x)  x + 2x2 +9 x3 +51 x4 + 
y2(x)  3y1(x) lnx + 1  f x2  19x3 + 
16. (b) r1  1, r2  0
(c) y1(x)  xr  2 x2 + 112 x3  x4 + 
y2(x)  y^x) lnx + 1  4x2 + 36x3  ^x4 + 
1―. (b) r1  1, r2  -1
(c) y1(x)  x  24x3 + ―ιx5 + 
y2(x)   3y1 (x) lnx + x1  90x3 +--------------
18. r1  5 - r2  0
y1(x)  (x  1)1/2[1  4 (x  1) + 480 (x  1)2 + ], p  1
19. (c) Hint: (n  1)(n  2) + (1 + a + β)(ο  1) + ΰβ  (n  1 + a)(n  1 + β)
(d) Hint: (n  Y)(n  1  y) + (1 + a + e)(n  σ) + ΰβ  (n  σ + a)(n  σ + β)
Section 5.8, page 289
Previous << 1 .. 378 379 380 381 382 383 < 384 > 385 386 387 388 389 390 .. 609 >> Next