Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Download (direct link): elementarydifferentialequations2001.pdf
Previous << 1 .. 370 371 372 373 374 375 < 376 > 377 378 379 380 381 382 .. 609 >> Next

13. a1 b2 --- a2b1 = 0
16. c cos t 17. c/x
18. c/(1 - x2) 20. 2/25
21. 3*/e = 4.946 22. p(t) = 0 for all t
26. If t0 is an inflection point, and = () is a solution, then from the differential equation
P(t0W(t0) + q (t0^(t0) = 0.
Section 3.4, page 158
1. e cos2 + ie sin2 = 1.1312 + 2.4717i
2. e2 cos 3 - ie2 sin3 = -7.3151 - 1.0427
3. -1
4. e2cos(n/2) ie2sin(n/2) = e2i = 7.3891 2cos(ln2) - 2i sin(ln2) = 1.5385 - 1.2779 n-1 cos(2 lnn) + i n-1 sin(2 lnn) = 0.20957 + 0.23959i
8. 7 = c1 t
10. 7 = c 12. 7 = c
14. 7 = c 16. 7 = c1
5.
6.
7.
9.
11.
13
15
17
18
19
20 21 22.
23.
24.
26.
35.
36.
37. 39. 41.
= c1et cos t + c1et sin t
7 = c1 7 = c1 7 = c1
e2t + c2 e-4t
e-3t cos2t + c2e-3t sin2t
-t cos(t/2) + c2e-t sin(t/2) = c1 e-t/2 cos t + c2e-t/2 sin t = 2 sin 21; steady oscillation = e-2t cos t + 2e-2t sin t; decaying oscillation = et-7l/2 sin2t; growing oscillation = (1 + 2^3) cos t - (2 - V3) sint
e cos V5 f + c2e^ sin \/5 t e-t cos t + c2e-t sin t cos(3t/2) + c2 sin(3t/2)
et/3 + c,e-4t/3
e 2t cos(3t/2) + c2e 2t sin(3t/2)
7 = /e 7 = V2e
t/2cos t + 2 e
t/2
sin t;
steady oscillation decaying oscillation
-(t-n/4)
sin t; decaying oscillation
(a) u = 2et/6 cos(V23 t/6) - (2/4l3)et/6 sin^V2! t/6)
(b) t = 10.7598
(a) u = 2e-t/5 cos(V34 t/5) + (7/V34) e-t/5 sin^V^4 t/5)
(b) T = 14.5115
25. (a) = 2e-t co^V^ t + [(a + 2)/V5] e-t si^V5 t (b) a = 1.50878
(c) t ={n arctan [^\/5/(2 + a)]}/\/5 (d) n/\[b
(b) T = 1.8763
(a) = e at cos t + ae at sin t
2
x =
T = 4.3003;
e
t2/2 dt
(c) a = 1, T = 7.4284; a Yes, = c1 cos x + c2 sin x.
No
Yes, = c1 e-t2/4 cos(V3 12/4) + c2e-2/4 sin^V3 t2/4) = c1 cos (ln t) + c2 sin(ln t) = cj t-1 cos(2 ln t) + c2t-1 sin(2 ln t)
= 2, T= 1.5116
40.
42.
7 = c1^ 1 + c2t ,2
7 = c11 + c2t 1
Section 3.5, page 166
= c, el + c2 te^
,e-"2 + c2e3t/2
7 = c1 7 = c1 7 = c1 7 = c1
et cos 3t + c2et sin3t
t/4
+ c2e
e2t/5 + c2te2t/5 11. 7 = 2e2t/3 - 3'2'/3,
12. = 2te
13.
7 as t
2.
4.
6.
8.
10.
00
t/3
-3t/2
+ c2te + c2te
t/3
-3t/2
7 = c1 e 7 = c1 e
= c1e3t + c2te3t = c1e-3t/4 + c2te-3t/4 = e-t/2 cos(t/:2) + c2e~
t/2
sin(t/2)
= e-t/3 cos 3t + 9 e-t/3 sin3f.
as t -
^ 0 as t -
00
e
690
Answers to Problems
See SSM for detailed solutions to 14, 17ab
17cd, 19, 21, 25
27, 30, 31b 33, 35, 38
42
I,4, 6, 8
II, 13, 16 19a, 22a
2(f+1)
14. = 7e2(f+1) + 5fe-
15. (a) = e3f/2 2fe 3f/2
(c) f0 = 16/15, 0 =
--5 e 8/5
= - 0.33649
3f/2.
b= --
u 2
y0
= 5e4/5 = 2.24664
(d) = e 3f/2 + (b + )fe-
16. = 2et/2 + (b 1)fef/2; b = 1
17. (a) = ef/2 + 5 fe-t/2 (b) 0 = f,
(c) = e-t/2 + (b + )fet/2
(d) fM = 4b/(1 + 2b) ^ 2 as b ^; yM = (1 + 2b) exp[2b/(1 + 2b)] as b
OO
18. (a) = ae 2t/3 + (3a 1)fe2f/3 23. y2(t) = f3 25. y2(f) = f 1 lnf 27. y2(y) = cos x2 29. yJx) = x1/4e^
32. = c1 e^/2?X eSs2/2 ds + c2e^/2
33. y2(f) = y() [ ӗ 2(s) exp f p(r) dr
"0 L Js0
34. y2(f) = f 1lnf
36. y2 ( x) = x 39. (b) 0 + (/)0 42. = c1f1/2 + c2f1/2 ln f
Previous << 1 .. 370 371 372 373 374 375 < 376 > 377 378 379 380 381 382 .. 609 >> Next