Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

# Elementary Differential Equations and Boundary Value Problems - Boyce W.E.

Boyce W.E. Elementary Differential Equations and Boundary Value Problems - John Wiley & Sons, 2001. - 1310 p.
Previous << 1 .. 208 209 210 211 212 213 < 214 > 215 216 217 218 219 220 .. 609 >> Next

28. A mass m on a spring with constant k satisfies the differential equation (see Section 3.8)
mu" + ku = 0,
where u(t) is the displacement at time t of the mass from its equilibrium position.
(a) Let x1 = u and x2 = d; show that the resulting system is
0 1 x = | I x.
y—k/m 0y
(b) Find the eigenvalues of the matrix for the system in part (a).
7.7 Fundamental Matrices
393
(c) Sketch several trajectories of the system. Choose one of your trajectories and sketch the corresponding graphs of x1 versus t and of x2 versus t. Sketch both graphs on one set of axes.
(d) What is the relation between the eigenvalues of the coefficient matrix and the natural frequency of the spring-mass system?
> 29. Consider the two-mass, three-spring system shown in Figure 7.1.1, whose equations of motion are given in Eqs. (1) of Section 7.1. If there are no external forces, and if the masses and spring constants are equal and of unit magnitude, then the equations of motion are
x7/ = _2x1 + x2, x2' = x1 _ 2x2.
(a) Transform the system into a system of four first order equations by letting y1 = x1,
Ó2 = ^ Óç = xvand Ó4 = x2.
(b) Find the eigenvalues of the coefficient matrix for the system in part (a).
(c) Solve the system in part (a) subject to the initial conditions yT(0) = (2, 1, 2, 1). Describe the physical motion of the spring-mass system that corresponds to this solution.
(d) Solve the system in part (a) subject to the initial conditions yT(0) = (2, \/3, _2, _V3). Describe the physical motion of the spring-mass system that corresponds to this solution.
(e) Observe that the spring-mass system has two natural modes of oscillation in this case. How are the natural frequencies related to the eigenvalues of the coefficient matrix? Do you think that there might be a third natural mode of oscillation with a different frequency?
7.7 Fundamental Matrices
The structure of the solutions of systems of linear differential equations can be further illuminated by introducing the idea of a fundamental matrix. Suppose that x(1) (t),..., x(n) (t) form a fundamental set of solutions for the equation
on some interval a < t <
x' = P(t)x . Then the matrix
^(t) =
\x^(t)
x[n)(t Ë
x
(n)
(1)
(2)
(t)
whose columns are the vectors x(1) (t),..., x(n) (t), is said to be a fundamental matrix for the system (1). Note that a fundamental matrix is nonsingular since its columns are linearly independent vectors.
EXAMPLE
1
Find a fundamental matrix for the system
x = ( ² J ) x. (3)
In Example 1 of Section 7.5 we found that
x(1)(t) = GJ) ’ x(2)(t) = (-2^
394
Chapter 7. Systems ofFirst Order Linear Equations
are linearly independent solutions of Eq. (3). Thus a fundamental matrix for the system
(3) is
= G? -¿¿-) ¦ (4)
The solution of an initial value problem can be written very compactly in terms of a fundamental matrix. The general solution of Eq. (1) is
x = clx(1)(t) + ••• + cn x(n)(t) (5)
or, in terms of ^(t),
x = W(t)c, (6)
where c is a constant vector with arbitrary components c1t, cn. For an initial value problem consisting of the differential equation (1) and the initial condition
x(t0) = x0, (7)
where t0 is a given point in à < t < â and x0 is a given initial vector, it is only necessary to choose the vector c in Eq. (6) so as to satisfy the initial condition (7). Hence c must satisfy
^(<0)c = x0. (8)
Therefore, since ^(t0) is nonsingular,
c = ^-1(t0)x° (9)
and
x = ^(t)^-1(t0)x° (10)
is the solution of the initial value problem (1), (7). We emphasize, however, that to solve a given initial value problem one would ordinarily solve Eq. (8) by row reduction and then substitute for c in Eq. (6), rather than compute ^-1(t0) and use Eq. (10).
Recall that each column of the fundamental matrix ^ is a solution of Eq. (1). It follows that ^ satisfies the matrix differential equation
^'= P(t)W. (11)
This relation is readily confirmed by comparing the two sides of Eq. (11) column by column.
Previous << 1 .. 208 209 210 211 212 213 < 214 > 215 216 217 218 219 220 .. 609 >> Next