Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Detection, Estimation modulation theory part 1 - Vantress H.

Vantress H. Detection, Estimation modulation theory part 1 - Wiley & sons , 2001. - 710 p.
ISBN 0-471-09517-6
Previous << 1 .. 137 138 139 140 141 142 < 143 > 144 145 146 147 148 149 .. 254 >> Next

1. Find an expression for —
2. Assume that
s(t) = V2kPe~kt, t > 0,
0, / < 0
and
ñ t \ - 2ka°2
5-ñ(") - ø2 + k2
Evaluate A as a function of Ë Ä Aac2lkNo.
Problem 4,3.17. Sensitivity to Noise Spectrum. Assume the same nominal model as in Problem 4,3.16.
1. Now let and where Find
Na = No 2 2
î / ÷ 2 kaOa2
S'C(W) = ^Tk?
ka = ê (1 + ó)
Oa2 = "ñ2 (1 + Z)
„ ÄÄ, ,„d M5
y=o a
dd/dy
Ë Ä
.= 0 — Z'
2. Evaluate Äó and Ä2 for the signal shape in Problem 4.3.16.
Problem 4.3.18. Sensitivity to Delay and Gain. The received waveforms under the two hypotheses are
r(t) = VEs(t) + hsit — r) + w(t\ r{t) — bis{t — r) + w(t),
— oo < t < oo :HU
— oo < t < oo: #o,
where bi is N(0, oj) and w(t) is white with spectral height N0/2. The signal is
s(t) =(^)'4’ 0 < t < T,
= 0, elsewhere.
1. Design the optimum receiver, assuming that r is known.
2. Evaluate d2 as a function of r and oj.
3. Now assume
òà = r (1 + äã).
Find an expression for d2 of the nominal receiver as a function of x. Discuss the implications of your results.
4. Now we want to study the effect of changing oIt Let
*,a2 = a/2 (1 + Ó) and find an expression for d2 as a function of y.
Linear Channels
Problem 4.3.19. Optimum Signals. Consider the system shown in Fig. 4.49a. Assume that the channel is time-invariant with impulse response h(r) [or transfer function #(/)]. Let
#(/) = 1, I/I < W,
= 0, otherwise.
The output observation interval is infinite. The signal input is s(t), 0 < t < T and is normalized to have unity energy. The additive white Gaussian noise has spectral height N0j2.
2. Choose s(t), 0 < t < Ã, to maximize d2.
394 4.8 Problems
Problem 4.3.20. Repeat Problem 4.3.19 for the h{t, r) given below:
hit, r) = h{t - r), 0<r<I,f <r<f,-oo<,<oo,
= 0, elsewhere.
Problem 4.3.21. The system of interest is shown in Fig. P4.6. Design an optimum binary signaling system subject to the constraints:
1. j* s2(t)dt = Et.
2. j(f) = 0, t < 0,
t < T.
3. h{r) = e~k\ r > 0,
= 0, r < 0.
Either
*«(f)
Source 1,0 Transmitter ±s(t) Channel
h(r)
r(t) 0<tST
Fig. P4.6
Section P.4.4 Signals with Unwanted Parameters
Mathematical Preliminaries
Formulas. Some of the problems in this section require the manipulation of Bessel functions and Q functions. A few convenient formulas are listed below. Other relations can be found in [75] and the appendices of [47] and [92]
I. Modified Bessel Functions
1 C2n
/„(z) A — exp i±jnO) exp (z cos â) dd, (F.1.1)
²ÒÒ Jo
Ø = /-»(*), (F.1.2)
m - f^TT)’ V ^ -1, -2,..z « 1, (F.1.3)
*»'• <F-M> ~k (2” Iv(z)) = z~+ t(z), (F.1.5)
~ J; (*• Ø) = (F.1.6)
II. Marcum9s Q-function [92]
Q(V2a, Ó2b) = J exp {-a 4- x) 10{2ó/ax) dx, (F.2.1)
Qia, a) = i[l + /0(a2) exp (-a2)], (F.2.2)
Signals with Unwanted Parameters 395
1 + Q(a, b) - Q(b, a) Ü2 - a
?2 _ a2 Ëîî , 2äÀó \
¦ J,., “»' - *> '¦(^Tp) Ë’ ‘>«>0. (F.2.3)
+ V + Oj1 e(*/0l2 + V’ ^v+~v)’ <F'2‘4)
Q(a, 6) ~ erfc* (b - a), b» \,b» b - a. (F.2.5)
III. Rician variables [76]
Consider the two statistically independent Rician variables, xx and x2 with probability densities,
pXkm = exp (--~2à/ê2) /o(?#)' 0 < ak < CO, (F.3.1)
k k k 0 < Xk < oo,
ê = 1, 2.
The probability of interest is
P* = Pr [*2 > *l].
Define the constants
a = g22 è _ fli2 _ Oi
Previous << 1 .. 137 138 139 140 141 142 < 143 > 144 145 146 147 148 149 .. 254 >> Next