Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Theory of Linear and nonlinear circuits - Engberg J.

Engberg J. Theory of Linear and nonlinear circuits - Wiley & sons , 1995. - 154 p.
ISBN 0-47-94825 Previous << 1 .. 64 65 66 67 68 69 < 70 > 71 72 73 74 75 76 .. 85 >> Next ...r.p!?) (wT<Ji,i...‚Äô..................‚Ä¢- i>T4pu),i,. ‚ñÝ ‚ñÝ - –§—Ç—á—Ä{,),—è—Ä(,))
PM ¬´,
–ü –ü 1.–•–∏.–≥)¬∞–ì,—Ä{–§–¢–ß–≥.—Ä') (9-70'
r=l p = l
for 5 ¬£{1,2,where
S(9r,i......9r,nr)
for ?‚ñÝ ¬£ {l,2,...,P(g)} and
—Å = [2U, 21,....2ilmli_1jr ¬£ –≥|—Ç||—Ö1 (9.72)
Equation (9.70) has used the fact that the multi-port frequency domain Volterra
transfer function (G,)ni....nP,,)(') >s partly symmetrical for all q ¬£ {1,2. ...,Q}.
The condition in Equation (9.71) is used to avoid contributions which are simply permutations of {qr 1, - ,qr –Ø–≥} where r ¬£ {1, 2...., P(q)}. As seen from Equations
(9.68) and (9.70) there must be summation over many 17-variables. From Equation (9.70) it is seen that there are ||mi| x ||nj| q-variables. According to the properties, only j j m. j] of these (/-variables are different from 0 (those (/-variables that are not 0
are 1). Thus it would be more convenient to use a pointer wt,i to indicate which
¬´jr-variable in the set {71,1,w,..., <7i,ni,fc.:...?P(7).l.W------^P{q).np,‚Äû,.k.i} is equal
to 1. In this case only ||mij u;-pointers are needed instead of j|m!i x |jnj| (/-variables.
Now the requirements jiven ‚Äòor the g-vaiiables 111 Equation (9.70) ‚Äî and in turn in properties 9.2, 9.1, 9.3 and 9.4 ‚Äî must be transferred to the rr-pomters. As seen from the properties
‚Ññ*.; ¬£ {1.2,.... ||n||} (9.73)
for –∫ ¬£ {1, 2,.... A‚Äô} and / ¬£ {1,2, ...,mj.}.
Next the correct qr vectors where –≥ ¬£ {1. 2, . . .. P(q)} and p ¬£ {1.2......nT}
inusi be determined. To do this define vectors
1 fo‚Äò cVi<-..<cVnr ,()7
0 otherwise
236
9. Multi-port Volterra transfer functions
~r.p(^0 ^r.p.l.lV1-^); ‚ñÝ - ‚Ä¢ j "r.p,l,Tni('^)> ‚ñÝ ‚ñÝ ‚Ä¢
6 4m|ixl
(9.74)
for r ¬£ {1,2,..., P(q)} and p 6 {1,2,..., nT}, where
to = [uj1;1----,wi,m‚Äû........wKil,..., WK,mK]T ‚Ç 2|[‚Äôm!|xl (9.75)
–ì 1 for wkJ = m +---------h nT-1 +p . ,
= ( 0 otherwise (9'‚Äò6)
for –∫ ¬£ {1, 2,. .., A'} and /6 {1,2,..., m*}. Thus
(9.77)
–Ø—Ç,—Ä ‚Äî z7 Aw)
.e above, a modified version of Equation (0.70) is obtained as
KWi!^!!)
iVni) Oi.i
E E ‚ñÝ ‚Ä¢‚Ä¢ E ‚ñÝ E E
nj =0 r ‚Ä¢P(q)=0 01,1‚Äî1 J1 ,n^ ‚Äî1 ‚Äúfllt.i-1 34¬´),¬ªpr,)-
ini INI INI INI
E - ‚Ä¢ E ‚ñÝ ¬£ ‚ñÝ E
^1.1=i ¬´"l.mj =1 ‚ÄúA',l=1 1LJK,rnj(^ i
PM –Ý{—è)
–ü n- —É 1 1- ‚Äîl v (‚ñÝ‚Äú>))
PM 71.
A.codMD –ü –ü –ª–æ–≥.–Ý(11–≥–≥.–Ý(^)1!)
r = l p=1
I ,"T5 / HI ^ Zl,l'\W }l ‚ñÝ - ‚ñÝ 5 ‚ÄùV*‚Äô ' Z 1 .71 –õ I
‚ñÝ ‚Ä¢ ‚Ä¢; ^—Ä^–¥–°—à), ‚Ä¢ ‚ñÝ ‚Ä¢ >^TzP(,),npf?)(‚Ñ¢))
-P(?) –ü–≥
II Ii (^.–≥)–æ–≥–õ–§1 ZM>(¬´)) I9'78)
r = l ? = 1
In Equation (9.78) it is not necessary to include Ai(-) from Equation (9.70) because the use of w pointers ensures that Aj(-) = 1.
9.3. Theory
237
9.3.6 Algorithm
To determine the non-linear multi-port frequency domain Volterra transfer function Hmi.....mA.(-) the following algorithm can be used.
1. Specify the number of controlling variables for all Q non-linear subsystems.
{/‚Äô(1),.. ,,P(Q)}. Specify j q for all q 6 {1,2,...,Q}
where jq contains all subscript numbers for the relevant controlling variables x(J) = [ii(/),...,ih(/)]t. For example, if j:j = [l,2,4]r for non-linear subsystem q 6 {1,2, ...,Q} then the corresponding controlling variables are {xi(f),xi(f),x¬±(f)}.
2. Determine expressions for the system matrices and vectors of the linear system:
A~\f), and b(/).
3. Specify the multi-port frequency domain Volterra transfer function (G,j)‚Äûlr..i‚Äûp(,|)(j for all the non-linear subsystems q ¬£ {1,2,..., Q}.
4. Determine the controlling vector Zjjmi|(j|Y>j|). This is done by a recursive method where highex order variables are determined from lower order variables as follows:
‚Ä¢ Determine xi(0t,i) for all –∫ ¬£ {1. 2,..., A'} and I ¬£ {1,2,..., m.t} using Equation (9.53).
‚Ä¢ Determine X2(i>Te) for all e where ||e|| = 2 using Equations (9.68) and
(9.78). The vector e is given by
e = ......, –µ–¥-,—å .. ., eK.m..}1 ¬£ {0, l}ilT*¬ª)!xl
(9.79)
where the element ¬£ {0,1} for all –∫ ¬£ {1,2, ...,A'} and
/6 {1,2,..., –æ—Ç*}.
‚Ä¢ Determine cc3('tiTe) for all e where [|el] = 3 using Equations (9.68) and (9.73).
‚Ä¢ Determine cc js —Ñ–ì–µ) and so on.
‚Ä¢ ‚Ä¢ ‚Ä¢
‚Ä¢ Determine —Ö—â–≥–∏\(–§' e) ‚Äòor e where ilejl ‚Äî using Equations (9.6?) and (9.78). The only e which fulfils this is e = 1. Thus the desired controlling variables ii|m||(!i'0ii) are determined.
5. Determine ffm, —Ç–∫(–§i,i, ‚Ä¢ , .I 4‚ÄôK,i, ‚ñÝ ‚ñÝ ,i‚Äôy 4K) using Equation
(9.38) if ]|m|| = 1 and Equation (9.41) if ||m|| ¬£ {2,3. :*}.
238
9. Multi-port Volterra. transfer functions
9.4 Computer implementation
This section briefly discusses the computer implementation of the theory in Section
9.3 to determine non-linear multi-port frequency domain Volterra transfer functions. The implementation is made in the MAPLE V Release 3 symbolic programming language which, for example, makes it possible to determine algebraic expressions for the multi-port Volterra transfer functions. The source code for the program is included in appendix E. Previous << 1 .. 64 65 66 67 68 69 < 70 > 71 72 73 74 75 76 .. 85 >> Next 