Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary differential equations 7th edition - Boyce W.E

Boyce W.E Elementary differential equations 7th edition - Wiley publishing , 2001. - 1310 p.
ISBN 0-471-31999-6
Download (direct link): elementarydifferentialequat2001.pdf
Previous << 1 .. 366 367 368 369 370 371 < 372 > 373 374 375 376 377 378 .. 486 >> Next

f(t,y) = 2t + e-ty, (to,yo) = (o,1) and h = .1 we have ko1 = o + eo = 1
ko2 = 2(o + .o5) + e-(o+.o5)(1+.5ko1) = 1.o48854
ko3 = 2(.o5) + e-(.o5)(1+.o5ko2) = 1.o48738
ko4 = 2(.1) + e"(.1)(1+.1ko3) = 1.o95398 and hence
y(.1) @ y1 = 1 + .1(ko1 + 2ko2 + 2ko3 + ko4)/6 = 1.1o4843.
We have f(tn,Yn) = (4 - tnyn)/(1 + Yn). Thus for ft O II O
Yo = -2 and h = .1 we have
k01 = f(0,-2) = .8
k02 = f( .05, - 2 + .05(.8)) = f(.05, - 1.96) = . 846414,
k03 = f( .05, - 2 + .05k02) = f(.05, - 1.957679) = .847983,
k04 = f( .1, - 2 + . . 1k03) = f(.1, - 1.915202) = . 897927, and
Y1 = -2 + .1(k01 + 2k02 + 2k03 + k04)/6 = -1. 915221. For
comparison, see Problem 11 in Sections 8.1 and 8.2.
166
Section 8.4
14a.
14b. We have f(tn,yn) = tn
+ yn,
t0
0, y0
1 and h
.1 so
k01
k02
02 + 12
= (.05)
k
03
1
+ (1 + .05)2 = 1.105
= (.05)2 + [1 + .05(1.105)]2 = 1.11605 k04 = (.1)2 + [1 + .1(1.11605)]2 = 1.245666 and thus y! = 1 + .1(k0i + 2k02 + 2k03 + k04)/6 = 1.11146. Using these steps in a computer program, we obtain the following values for y:
h = .025 5.8483 14.3021 49.757
14c. No accurate solution can be obtained for y(1), as the values at t = .975 for h = .025 and h = .0125 are 1218 and 23,279 respectively. These are caused by the slope field becoming vertical as t ? 1.
t
.8
.9
.95
h =.1 5.842 14.0218
h = .05 5.8481 14.2712 46.578
h = 0.125 5.8486 14.3046 50.3935
Section 8.4, Page 444
4a. The predictor formula is
Yn+1 = Yn + h(55fn - 59fn_! + 37fn_2 - 9fn_3)/24 and the corrector formula is
Yn+1 = Yn + h(9fn+i +19fn -5fn-i + fn-2)/24, where
fn = 2tn + exp(-tnyn). Using the Runge-Kutta method, from
Section 8.3, Problem 4a, we have for t0 = 0 and yo = 1,
y1 = 1.1048431, y2 = 1.2188411 and y3 = 1.3414680. Thus the
predictor formula gives y4 = 1.4725974, so f4 = 1.3548603 and
the corrector formula then gives y4 = 1.4726173, which is
desired value. These results, and the next step, are
summarized in the following CD i1 rtf JJ
n yn fn yn+1 fn+1 yn+1
0 1 1 Corrected
1 1.1048431 1.0954004
2 1.2188411 1.1836692
3 1.3414680 1.2686862 1.4725974 1.3548603 1.4726173
4 1.4726173 1.3548559 1.6126246 1.4465016 1.6126215
5 1.6126215
Section 8.4
167
where fn is given above, yn+1 is given by the predictor formula, and the corrected yn+1 is given by the corrector formula. Note that the value for f4 on the line for n = 4 uses the corrected value for y4, and differs slightly from the f4 on the line for n = 3, which uses the predicted value for y4.
4b. The fourth order Adams-Moulton method is given by
Eq. (10): yn+1 = yn + (h/24)(9fn+1 + 19fn - 5f-1 + fn-2). Substituting h = .1 we obtain
yn+1 = yn + (.0375)(19fn - 5fn-1 + fn-2) + .0375fn+1.
For n = 2 we then have
y3 = y2 + (.0375)(19f2 - 5f1 + f0) + .0375f3
= 1.293894103 + .0375(.6 + e-.3y3), using values for
y2, f0, f1, f2 from part a. An equation solver then yields y3 = 1.341469821. Likewise
y4 = y3 + (.0375)(19f3 - 5f2 + f1) + .0375f4
= 1.421811841 + .0375(.8 + e-.4y4), where f3 is calculated
using the y3 found above. This last equation yields y4 = 1.472618922. Finally
y5 = y4 + (.0375)(19f4 - 5f3 + f2) + .0375f5
= 1.558379316 + .0375(1.0 + e-.5y5), which gives y5 = 1.612623138.
4c. We use Eq. (16):
Yn+1 = (1/2 5)(48Yn - 36Yn-i + 16Yn2 - 3yn-3 + 12hfn+i).
Thus y4 = .04(48y3 - 36y2 + 16yi - 3y0) + .048f4
= 1.40758686 + .048(.8 + e"^4), using values
for y0, y1. y2, y3 from part a. An equation solver then yields y4 = 1.472619913. Likewise y5 = .04(48y4 - 36y3 + 16y2 - 3y1) + .048f5
= 1.54319349 + .048(1 + e .5y5), which gives y5 = 1.612625556.
7a. Using the predictor and corrector formulas (Eqs.6 and 10) with fn = .5 - tn + 2yn and using the Runge-Kutta method to calculate y1(y2 and y3, we obtain the following table for h = .05, t0 = 0, y0 = 1:
168
Section 8.4
7b.
7c.
n Yn fn Yn+1 fn+1 Yn+1 corrected
0 1 2.5
1 1.130171 2.710342
2 1.271403 2.9420805
3 1.424858 3.199717 1.591820 3.483640 1.591825
4 1.591825 3.483649 1.773716 3.797433 1.773721
5 1.773721 3.797443 1.972114 4.144227 1.972119
6 1.972119 4.144238 2.188747 4.527495 2.188753
7 2.188753 4.527507 2.425535 4.951070 2.425542
8 2.425542 4.951084 2.684597 5.419194 2.684604
9 2.684604 5.419209 2.968276 5.936551 2.968284
10 2.968284
From Eq.(10) we have h
Yn+1 = Yn + (9fn+1 + 19fn - 5fn-i + fn-2)
24
= Yn + -------- [9(.5
24
-n+1
+ 2Yn+1) + 19fn - 5f
n-1
+ f
n-2
].
Solving for yn+i we obtain h
Yn+1 = [Yn + - (19fn - 5fn-1 + fn-2 + 4.5 - 9tn+1)]/(1-.75h).
24
For h = .05, t0 = 0, y0 = 1 and using y1 and y2 as calculated using the Runge-Kutta formula, we obtain the following table:
n Yn fn Yn+1
0 1 2.5
1 1.130171 2.710342
2 1.271403 2.942805 1.424859
3 1.424859 3.199718 1.591825
4 1.591825 3.483650 1.773722
5 1.773722 3.797444 1.972120
6 1.972120 4.144241 2.188755
7 2.188755 4.527510 2.425544
8 2.425544 4.951088 2.684607
9 2.684607 5.419214 2.968287
10 2.968287
From Eq (16) we have
Yn+1 = (48Yn - 36Yn-1 + 16Yn-2 - 3Yn-3 + 12hfn+1)/25
Previous << 1 .. 366 367 368 369 370 371 < 372 > 373 374 375 376 377 378 .. 486 >> Next