Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

# Elementary differential equations 7th edition - Boyce W.E

Boyce W.E Elementary differential equations 7th edition - Wiley publishing , 2001. - 1310 p.
ISBN 0-471-31999-6
Previous << 1 .. 303 304 305 306 307 308 < 309 > 310 311 312 313 314 315 .. 486 >> Next

\ 6e 3
e-----
2
2t
2t + e3t 21, 1J(
e 2t + 1 e3
- 3 et + 1 e-2t 4 et - 1 e-2t 1 et - 1 e-2t
1 e' - e-2t + 1 e3^
e 2t - 2 e-t - 1 e2t)
12 1 12 e
-2et + e-2t + e3t
 1 et + e
+ 2 e3
12. x =
3 ) e t cos2t +
/ -2
e-t sin2t
Section 7.8, page 407
1. X = C^2) et + C2 3. x = C1 e-t + C2
4. X = C1 (1) e t/2 + C2
5. x = ^ 4 e t + c2 1 I e2t +
2
6. x = c1 I 1 j e2t + c2 I 0 I e t + c3 I 1
2. x = M2) + c2
1 j te2t + |o j e2t
e
e
713
See SSM for detailed solutions to 9
11, 12, 14
15, 17a
17 bed
17ef
\-33/ \-6/ \1/
12. x = - 1 e-tl2 + - I 5 I e
-7t/2
13. X = C1 ( J t + C2
1) t In t + (J| t
14. X = Cl[1) t 3 + C2
^ t-3ln t -( ?) t-3
16. (b)
12 e-t/2 +
2)te-t/2 +(2'e-'/2
17. (b) x(1)(t) =
(c) x(2)(t) =
(d) x(3)(t) =
e21
1
te2 + ^lj e2
(t2/2)e2t + |l j te2t + |oj e2t
( 0 1 t + 2 \
(e) V(t) = e21 1 t +1 (I2/2) + t
- 1 -t -(t2/2) + 3j
/ 0 1 2 -3 3 2
(f) T = 1 1 0 , T-1 = 3 -2 -2
\- 1 0 3 -1 1 1
J =
/2 1 0\
0 2 1
v0 0 2/
4
714
See SSM for detailed solutions to 19abc
19d
1, 2
3
4
18. (a) x(1) (t) = I 0 I et
1
(e) W(t) = et 0
4t
1
or et 0
2t
4t
1
(f) T =
J =
2 -3 -2t - 1
0
0 , T-1 =
2 2 2t 1
2
0 4
V2 -2 -v /1 0 0\
0 1 1
I0 0 1
t9 A2 20 19 (a) J2 = 0
J3 =
1 -1/2
0 1/4
2 -3/2 -1
0
0
0J 30^
0 03
J4 =
04 40
0 04
(c) exp(Jt) = e0t
(d) x = exp(Jt)x0
20. (c)exp(Jt) = e° Section 7.9, page 417
1t 0 1
(1 0 0\ 0 1 t
V0 0 1
21. (c) exp(Jt) = e0t
(1 t t2 /2
0 1 t
V0 0 1 /
L x = c^1) ? + e-t + 3(T) te - e 0 t - (1
2. x c
1
m S)e 2t - WV3
2/3 +e + e-?
3. x = 1 (2t - 3sin2t - 1cos2t + c1) ( 5cosf ) 5V 2 2 1 \2cos t + sin t)
+ 5(-1 - 1 sin 2t + 3 cos 2t + c2) ^- cos5 *+ 2 sin t) ( ) (1) 2t (0) -2t 1 (1) t
4 x = M-4)e-3t + MU^ - HU e~2t + 5U'e'
5. x = cM2) + c2
2) t - 5(1
- 2(2)ln t + ( 5)t -
1 -10
c1 12
-2
c2 1
-5t
7. x = c^j et + <,(9 e-- + I (-9 ?
o-1+ko -+25 (t
2
715
See SSM for detailed solutions to 12, 14
CHAPTER 8
1ac, 5ac, 7ac
x = c, I 1 I e + c2 ( 1 ) e  + I 1 1 e + 2 ( 1 ) te
1 \1/ 2\3) \0j T \1
cn1)e-t/2 + c^_1
9. x = cJM e-t/2 + cJ_M e-2t + f 3 t -( 15) + ( 6 \er
2/ \ 4 / V2
10.x=me-t+ci( Z2)e-4t-te-t+UJ+7?)e-t
s?r 2V 1 ! 3 \2 -V^ TH -1 -VI
11. x = ( 1 sin2 t + c1) ( 5cost A + (- 11 - 1 sin t cos t + c2) ( 5sin * )
V2 1 y 2 cos t + sin t) 2 2 2 \- cos t + 2 sin t)
12. x = Aln^in t) - ln( cos t) - 21 + elf,, 5cost I
L5 v 7 v 75 ^\2cosf + sin t)
+ [|ln(sin t) - 51 + c2] T 5 sin ^
L5 v 7 5 2J \- cos t + 2 sin t)
( e~t/2 cos11 e-t/2sin1 A t/2 ( sin11
13. (a) W(t) = ,/2 1 _tn 2 (b) x = e-t/2 2 1
\4e sin!t -4e t/2cos1 tj y4 - 4cos21
14. x = c1 (1) t + c2 Q f-1 - (2) + 1 (^) t - (1) t ln t- 1 (4) ^
15.x=c1 (2)t2+c2 (2)t-1+(2)t+10 (-1)t4 -1 (2
Section 8.1, page 427
1. (a 1.1975, 1.38549, 1.56491, 1.73658
(b 1.19631, 1.38335, 1.56200, 1.73308
(c 1.19297, 1.37730, 1.55378, 1.72316
(d 1.19405, 1.37925, 1.55644, 1.72638
2. (a 1.59980, 1.29288, 1.07242, 0.930175
(b 1.61124, 1.31361, 1.10012, 0.962552
(c 1.64337, 1.37164, 1.17763, 1.05334
(d 1.63301, 1.35295, 1.15267, 1.02407
3. (a 1.2025, 1.41603, 1.64289, 1.88590
(b 1.20388, 1.41936, 1.64896, 1.89572
(c 1.20864, 1.43104, 1.67042, 1.93076
(d 1.20693, 1.42683, 1.66265, 1.91802
4. (a 1.10244, 1.21426, 1.33484, 1.46399
(b 1.10365, 1.21656, 1.33817, 1.46832
(c 1.10720, 1.22333, 1.34797, 1.48110
(d 1.10603, 1.22110, 1.34473, 1.47688
5. (a 0.509239, 0.522187, 0.539023, 0.559936
(b 0.509701, 0.523155, 0.540550, 0.562089
(c 0.511127, 0.526155, 0.545306, 0.568822
(d 0.510645, 0.525138, 0.543690, 0.566529
6. (a -0.920498, -0.857538, -0.808030, -0.770038
(b -0.922575, -0.860923, -0.812300, -0.774965
(c -0.928059, -0.870054, -0.824021, -0.788686
(d -0.926341, -0.867163, -0.820279, -0.784275
7. (a 2.90330, 7.53999, 19.4292, 50.5614
(b 2.93506, 7.70957, 20.1081, 52.9779
(c 3.03951, 8.28137, 22.4562, 61.5496
(d 3.00306, 8.07933, 21.6163, 58.4462
716
See SSM for detailed solutions to 9c
15, 16
19
10.
11.
12.
15.
16.
17.
18.
20.
(a) 0.891830,
(b) 0.908902,
(c) 0.958565,
(d) 0.942261,
(a) 3.95713,
(b) 3.95965,
(c) 3.96727,
(d) 3.96473,
(a) 1.60729,
(b) 1.60996,
(c) 1.61792,
(d) 1.61528,
(a) -1.45865,
(b) -1.45322,
(c) -1.43600,
(d) -1.44190,
(a) 0.587987,
(b) 0.589440,
(c) 0.593901,
(d) 0.592396, 1.595, 2.4636
1.25225 1.26872 1.31786 1.30153 5.09853, 5.10371, 5.11932, 5.11411, 2.46830, 2.47460, 2.49356, 2.48723,
, -0.217545,
, -0.180813,
, -0.0681657 , -0.105737,
2.37818, 4.07257 2.39336, 4.08799 2.43924, 4.13474 2.42389, 4.11908 6.41548, 7.90174 6.42343, 7.91255 6.44737, 7.94512 6.43937, 7.93424 3.72167, 5.45963 3.73356, 5.47774 3.76940, 5.53223 3.75742, 5.51404
1.05715, 1.41487 1.05903, 1.41244 1.06489, 1.40575 1.06290, 1.40789
0.791589,
0.795758,
0.808716,
0.804319,
1.14743,
1.15693,
1.18687,
1.17664,
|e+11 <
1.70973
1.72955
1.79291
Previous << 1 .. 303 304 305 306 307 308 < 309 > 310 311 312 313 314 315 .. 486 >> Next