Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary differential equations 7th edition - Boyce W.E

Boyce W.E Elementary differential equations 7th edition - Wiley publishing , 2001. - 1310 p.
ISBN 0-471-31999-6
Download (direct link): elementarydifferentialequat2001.pdf
Previous << 1 .. 302 303 304 305 306 307 < 308 > 309 310 311 312 313 314 .. 486 >> Next

24. X1 = -1, x(1) = ^-4j ; X2 = -1, x(2) =
Section 7.4, page 371
2. (c) W(t) = cexp J [p11 (t) + p22(t)] dt
6. (a) W(t) = t2
(b) x(1) and x(2) are linearly independent at each point except t = 0; they are linearly
independent on every interval.
(c) At least one coefficient must be discontinuous at t = 0.
0 1
v-2t-2 2t-
7. (a) W(t) = t(t - 2)e'
(b) x(1) and x(2)
are linearly independent at each point except t = 0 and t = 2; they are linearly independent on every interval.
(c) There must be at least one discontinuous coefficient at t = 0 and t = 2.
/0 1 \
(d) x' = I 2 - 2t t2 - 2 I x
V t2 - 2t t2 - 2t)
Section 7.5, page 381
(d) *=1 0,-2 o,-1 *x
L x = C1 Q) e-t + „(1) e2t
3. x = c1 (^ + c^^e-t
5. x = c1 (-?^) e-3t + C^1) e-t
7. x = C1 (3) + c2 (1)e-2t
9. x = c. I ^ + c2( 1 ) e2t
2. x = c1 (1) e-t + ^(T) e-2t
c1 14
4. x = c, I "le3' + c2 ( 1 ) e2t
6. x = c1 (-1) eU1 + c2 (j) e2t
8. x = c1 (-2) +c2 (-i) et
10.x=cA2+1i)et+e-it
3
2
2
710
Answers to Problems
See SSM for detailed solutions to 16
20, 25
31c
'1'
1'
4
5
-7
1N
4
3-1,
11. x = C1 1 e + c2\ -2 e + c3 | 0 I e
12. x = c1 I - 4 I e + c2 I 0 I e + c3 I 1 I e
13. x = c1 I -5 I e 2t + c2 I -4 I e c + c3 I 1 I e
14. x = c1 I -4 I et + c2 I -1 I e 2t + c3 I 2 I eit
1
i
3
4 -2
-1 3-1,
15 x=-f(0 ^+KD *4t
16. x =
1 AD - , 1 AD e3 t
2 \1
e- +
25
17. x = - 02 et + 2 11 e2t
18. x = 6 I 2 j et + 3| -2 j e-t -
1 e4
20.x=s (1) t+cJ3)11
21. x = c1 (3) t2 + c
4
22. x = s?j + c41) t-2
29. (a) X = x2, X2 = -(c/a)x1 - (b/a)x2
30. (a) x = -55 (2) e-«20 + 29 (_2) e-/4
(c) T == 74.39
31. (a) x = cj-^ e(-2+72)t/2 + r (e(-2-7~2)t/2-
23. x = d 2 t-1 + c2^\ t2
+ c2 1 e
r12 = (-2 ± v))/2; node
(b) x = d (7) e(-1^'?)t + cA 7^j e(-1-^ ; r1 2 = _1 ±72; saddle point
(c) r12 = -1 ± V® ; a = 1
32.(a) (0=c^3)e-2t+^(1)e-t 33.(a) (cR - R
CL
> 0
Section 7.6, page 390
1. x c et
,et( cos2t D + ceA sin2t A
1 \vcos2t + sin2ty 2 y- cos2f + sin2ty
, _f (2cos2f\ , _t
2. x = c,e 1 I „ , I + cne 1
1^1 sin2^ + c2^l ?s^)
3 _ I 5 cos t \ / 5 sin t \
. x cM2cost + sin t) ^l-cos t + 2 sin t)
2
4
Answers to Problems
711
See SSM for detailed solutions to 7, 9
11 ad,15ab
16abc, 18abc
21, 23abc, 29a
29bce
4 x = ce^i 5cos3* \ + ce‘/^ 5sin2t ,
1 l3(cos31 + sin3 t)J 2 \3(— cos 21 + sin31)
t cos t t
x = c,e + c, e
1 ' 2 cos t + sin t/ 2
2
sint — cos t + 2 sin f
6 X— c I — 2cos3f I _i_ c I — 2sin3t . X cMcos3t + 3sin3t/ cMsin3t— 3cos3t
xc
2
0
7. x = c1 I —3 I et + c2e^ I cos2f I + c3et
, sin2t )
0
sin2t cos 2t
2 e-2t \ c e-t
^ —72 sin 72 t \
cos 72 t v— cos 72 t — 72 sin 72 t y
(72cos72 t ^
sin 72 f 72 cos 721 — sin 72 t y
9. x e-
t I cos t — 3 sin t cos t sint
10. x e-
cos t - 5 sint —2cos t — 3 sin t
11.
13.
14.
15.
16.
17.
18.
19.
20.
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
12. (a) r = 5 ± i
r = -4 ± i
r = a ± i (b) a = 0
r = (a ±7a2 - 20)/2 (b) a = -72?, 0, 720
r = ±74 — 5a (b) a = 4/5
r = 4 ± 1v/3a (b) a = 0,25/12
r = — 1 ± 7—a (b) a = — 1, 0
r = -2 ± ^49 - 24a (b) a = 2,49/24
r = 1 a - 2 ± ya2 + 8a - 24 (b) a = -4 - 27^, -4 + 2710, 5/2
r = -1 ± 725 + 8a
- 24
(b) a = -25/8, -3
21. x = c1 t
cos(72ln t) 72 sin(72 in r)
+ c2t
sin ^72 in t) -72cos(72int)
22 I 5cos(ln t) \ + r( 5sin(ln t)
1 \2 cos(ln t) + sin(ln t) J 2 ^ — cos(ln t) + 2 sin(ln t)
)r = -:1 ± i, -4
23. (a)
24. (a)
r = -1± i 1
1 4 ± *•> 10
25. (b)
(c)
(d)
26. (b)
(c)
(d)
28. (b)
29. (a)
(b)
(c)
(d)
t/2 1 cos(t/2)
+ c2e~
4 sin(t/2)
Use c1 = 2, c2 = — 4 in answer to part (b). lim I(t) = lim V(t) = 0; no
t^TO t^TO
t/2 sin(t/2)
—4 cos(t/2)
I) = ce-t( cos t ) + ce-7 sin t
Vy 1 y— cos t — sin tj 2 y— sin t + cos t)
Use c1 = 2 and c2 = 3 in answer to part (b). lim I(t) = lim V(t) = 0; no
t^TO t^TO
r = ±i\/k/m (d) |r | is the natural frequency.
y1 = Ó2, y2 = -2y1 + Óç, y3 = y4 = y1 - 2y3 r = ±i, ±73 i
y1 = y3 = sin t + 2 cos t, y2 = y4 = —2 sin t + cos t
y1 = —y3 = sin 73 t + 2 cos 73 t, y2 = —y4 = —273 sin 73 t +73 cos 73 t
712
Answers to Problems
See SSM for detailed solutions to 2, 4
6, 10
11
1
3, 5
6. ®(t) =
7. ®(t) =
8. ®(t) =
9. ®(t) = 10. ®(t) =
11. x = -
2
Section 7.7, page 400
1. ®(t) =
2. ®(t) =
3. =
4. O(t) =
5. O(t) =
- 3 e-t I 4 2t 3e 2 e-t - 2 e2t\
2 e-t I 2 e2t 3e 4e-t - 1 e2tj
1 e~ t/2 I 1 e-t 2e e-t/2 - e-
4e~ t/2 - 1 e-t 4e 2 e-t/2 + 1e-
§ e - 2e -t - 2 et + 1 e-t \
§ e‘ - 2e -t - 2 et +3 e-7
1 e-3t + 4 e-‘ -1
5 ^ I 5
- 4 e-3t + 4 e2t cos t + 2 sin t
1 e-3t + 1 e2t
e-3t + 1 e2t
sint
- 5 sin t cost 2 sint
/ e ‘ cos2t -2e t sin2 A e - sin2f e - cos2ty
- 2 e2t + f e4t
- 2 e2t + f e4t
1 ^ _ 1 e4t
2 2
f e2t 1 e4t
e-t cos t I 2e-t sin t 5e-t sint -2e-2t I 3e-t
5 e-2t - 4e-t + f e2t \7 e-2t - 2e-t - 2 e2t
2
e-t sin t e-t cos t - 2e-t sin t.
~2t + e-t
-e
5 e-2t — 4 e-^ 4- 13 e2t
1 C7 C7 1 12
? + e-t
5 e-2t 4 e-t , 2.e2t
1 O -1 C7 1 i 'S C7
7 e-2t 2 e-t _ 13 e2t
4e 3e 12
1 A 4- 1
? C ^
e 2t + 1 e3
- f et - 1 e
\-1 ? - 1
Previous << 1 .. 302 303 304 305 306 307 < 308 > 309 310 311 312 313 314 .. 486 >> Next