Books in black and white
 Main menu Share a book About us Home
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Elementary differential equations 7th edition - Boyce W.E

Boyce W.E Elementary differential equations 7th edition - Wiley publishing , 2001. - 1310 p.
ISBN 0-471-31999-6
Download (direct link): elementarydifferentialequat2001.pdf
Previous << 1 .. 297 298 299 300 301 302 < 303 > 304 305 306 307 308 309 .. 486 >> Next

? = ?
n=0
x2 n
2nn!x2 n+1 (2n + 1)!
3. (n + 2)an+2 - an+1 - an = 0
71 (x) = 1 + 2 (x - 1)2 + i (x - 1)3 + 1 (x - 1)4 +  y2(x) = (x - 1) + 2 (x - 1)2 + 2(x - 1)3 + 1 (x - 1)4 +
4. an+4 = -k2an/(n + 4)(n + 3);
k2x4 k4x8
71 (x) = 1 -  +
a2 = a3 = 0 k6 x12
3  4 3  4  7  8
to ( i \m-
= 1 + V-----(^-
3478
3 4 7 8 11 12
\
(-1)m+1(k2 x4)m+1
m=0
3  4  7  8    (4m + 3)(4m + 4)
k2 x5
y2(x) = x - +
k4 x9
k6 x13
4.5 4-5-8-9 4-5-8-9-12-13
\
1\
(-1)m+1(k2 x4)m+1
m=0
4  5  8  9 (4m + 4)(4m + 5)
Hint: Let n = 4m in the recurrence relation, m = 1, 2, 3,... .
5. (n + 2)(n + 1)an+2 - n(n + 1)an+1 + an = 0, n > 1;
n+1
a2  0 a,
y1(x) = 1 - 2x2 - 1 x - 24x4 +  > y2(x) = x - 6x3 - 12x4 - 24x5 + '
2 = 2 °0
?1 x4 12
6. an+2 = -(n2 - 2n + 4)an/[2(n + 1)(n + 2)], n > 2;
2
0
y1(x) = 1 - x2 + 1 x4 - 30 x6 +  ,
7. an+2 = an/(n + 1), n = 0, 1, 2,...
72(x) = x - 4x3 + 160x5 - 1T2??x7 + ?
y, (x)  1   +---------------------
^ 1 1  3 1  3  5
x3 x5 x7
y2 (x)  x   +--------------------
J2 2 2  4 2-4-6
\
V (-1)nx2 n
t-t 1  3  5  (2n - 1)
n= 1
(-1)nx2 n+1
+------= x +> ---------------
1 2  4  6    (2n)
8. an+2 = -[(n + 1)2an+1 + an + an-1]/(n + 1)(n + 2), n = 1, 2,...
a2 = ~(a0 + a1)/2
y1(x) = 1 - 2 (x - 1)2 + 1 (x - 1)3 - 112 (x - 1)4 +   
72(x) = (x - 1) - 2 (x - 1)2 + 6(x - 1)3 - 6(x - 1)4 +   
9. (n + 2)(n + 1)an+2 + (n - 2)(n - 3)an = 0; n = 0, 1, 2,...
y1 (x) = 1  3x2, y2(x) = x  x3/3
10. 4(n + 2)an+2 - (n - 2)an = 0; n = 0, 1, 2,...
x2
x3 x5
y1(x 1 4 , y2(x) x 12 240 2240
x2 n+1
4n (2n - 1)(2n + 1)
7
a3 = 4 a1
Answers to Problems
697
See SSM for detailed solutions to 14, 16a, 19
22b, 23, 26
1, 6, 9afh
11. 3(n + 2)an+2 - (n + 1)an = 0; n = 0, 1, 2,...
ylU ) = 1 + ^ + i! + -1- x« + ? ? ? + 3n 5'  ? (2n - 1) x2 n + ? . .
^ 6 24 432 3n- 2-4- ? ? (2n)
2 3 8 5 16 7 2-4- ? ? (2n) 2n, 1
y, (x) = x + - x + x5 + x7 +-1- ----x n+1 + 
9 135 945 3n- 3-5- ? ? (2n + 1)
12. (n + 2)(n + 1)an+2 - (n + 1)nan-1 + (n - 1)an = 0; n = 0, 1, 2,...
x2 x3 x4 xn
y1(x) = 1 + y + y + 24 + ? ? ? + n! + ? ? ? , y2 = x
13. 2(n + 2)(n + 1)an+2 + (n + 3)an = 0; n = 0, 1, 2,...
y{x) = 1 - - x2 +  x4 -  x6 + ? ? ? + (-1)n 3'5' ' (2n + 1) x2n + ? ?
J1 4 32 384 2n (2n)!
y,(x) = x - y + ?. - jL + ... + (-1)n 4-6n (2n+2) ^ n+1 + , ..
3 20 210 2n (2n + 1)!
14. 2(n + 2)(n + 1)an+2 + 3(n + 1)an+1 + (n + 3)an = 0; n = 0, 1, 2,...
y1(x) = 1 - I(x - 2)2 + §(x - 2)3 + 64(x - 2)4 + ? ? ?
y2(x) = (x - 2) - 3 (x - 2)2 + 214 (x - 2)3 + «4(x - 2)4 + ? ? ?
15. (a) y = 2 + x + x2 + 1 x3 + 1 x4 + ? ? ? (c) about |x| < 0.7
16. (a) y =-1 + 3x + x2 - 3x3 - «x4 + ? ? ? (c) about |x| < 0.7
17. (a) y = 4 - x - 4x2 + 2x3 + f x4 + ? ? ? (c) about |x| < 0.5
18. (a) y = 3 + 2x - 3x2 - 2x3 - 8x4 + ? ? ? (c) about |x| < 0.9
19. y1(x) = 1 - 5(x - 1)3 - t2(x - 1)4 + T8(x - 1)6 + ' ' '
y2(x) = (x - 1) - 1 (x - 1)4 - 20 (x - 1)5 + 28(x - 1)7 + ? ? ?
71 zx , X 1 X 2 , X(X - 4) 4 X(X - 4)(X - 8) 6 ,
21. (a) y (x) = 1 x2 4---------------------------------------------x4-------------------------------------------x6 +   
1 2! 4! 6!
X - 2 3 (X - 2)(X - 6) 5 (X - 2)(k - 6)(k - 10) 7 y2(x) = x - -fp +--------------------------5-x5----------------7--------------x + ?
(b) 1, x, 1 - 2x2, x - 3x3, 1 - 4x2 + 3x4, x - 4x3 + 15x5
(c) 1, 2x, 4x2 - 2, 8x3 - 12x, 16x4 - 48x2 + 12, 32x5 - 160x3 + 120x
22. (b) y = x - x3/6 +? ? ?
Section 5.3, page 253
1. 4>"(0) = -1,
2. 0"(0) = 0,
3. 0"(1) = 0,
4. 0"(0) = 0,
0 "'(0) = 0,
0 '"(0) = -2, 0 '"(1) = -6, 0 "'(0) = -a0,
0lv (0) = 3 0lv (0) = 0 0lv (1) = 42 0lv (0) = -4a1
5. p = to, p = to
6. p = 1, p = 3, p = 1
7. p = 1, p = \/3
8. p = 1
9. (a) p = to (b) p = to (c) p = to
(f) p = V2 (g) p = to (h) p = 1
(k) p = \/3 (l) p = 1 (m) p = to (n) p = to
(d) p = to (e) p = 1
(i) p = 1 (j) p = 2
698
Answers to Problems
See SSM for detailed solutions to 10a
10b, 11
18
20, 22
26, 28
a2 2 (22 - a2)a2 4 (42 - a2)(22 - a2)a
,0. (a)/lW = 1 - -V - *  ' x4 - !----------?6---------L-
)
-x2 m------
[(2m - 2)2 - a2]  (22 - a2)a2
(2m)!
1  a2 3 (32  a2)(1  a2) 5
Yi(x) = x + -3- x3 + ^---------------5!------2 x5 + 
, [(2m  1)2  a2]  0  a2) x2m+1 ,
(2m + 1)!
(b) y1 (x) or y2(x) terminates with xn as a  n is even or odd.
(c) n  0, y  1; n  1, y  x; n  2, y  1  2x2; n  3, y  x  3x3
n. y1(x) = 1  6x3 + Jj0x5 + 4x6 +  . y2(x) = x  10x4 + iiio x6 + 504 x? + ?
p  ^
12. y1(x) = 1  6x3 + 1"2x4  45x5 +  > y2(x) = x  112x4 + 20x5  60x6 +  -
13. y1(x)  1 + x2 + 112x4 + ^x6 + , y2(x)  x + 6x3 + 65x5 + 56;0x7 + ,
p = n/2
14. y1(x) = 1 + 1 v3 + 12x4  ^x6 + - y2(x) = x  1 x3 + 24x4 + 120 x5 + -
p=1
15. Cannot specify arbitrary initial conditions at x  0; hence x  0 is a singular point.
x2 xn
16. y = 1 + x +  +  +  +   ex
2! n!
x2 x4 x6 x2n
17. y = 1 + T + + 2^ +  + im. +
18. y = 1 + x + 2x2 + 2x3 +----
19. y = 1 + x + x2 + + xn + ----------
Previous << 1 .. 297 298 299 300 301 302 < 303 > 304 305 306 307 308 309 .. 486 >> Next