Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Elementary differential equations 7th edition - Boyce W.E

Boyce W.E Elementary differential equations 7th edition - Wiley publishing , 2001. - 1310 p.
ISBN 0-471-31999-6
Previous << 1 .. 295 296 297 298 299 300 < 301 > 302 303 304 305 306 307 .. 486 >> Next

e2t + c2e3t + J [e3(t-s) - e2(t-s)] g(s) ds cos2t + c2sin2t + [sin2(t - s)] g(s) ds
13. Y(t) = 1 + t2 ln t 14. Y(t) = 2t2
15. Y(t) = 1 (t - 1)e2t 16. Y(t) = -2(2t - 1)e-t
11. Y(x) = i x2 (ln x)3 18. Y(x) =  x1/2 cos x
7 xet - tex 2 *
19. Y(x) = J (1 - g(t) dt 20. Y(x) = x-1/2J t-3/2sin(x - t)g(t) dt
23. (b) y = y0cos t + yd sin t + / sin(t - s)g(s) ds
Jt0
24. y = (b - a)-1 f1 [eb(t-s) - ea(t-s)] g(s) ds
t 0
25. y = gTl f ek(t-s) sing(t  s)g(s) ds
t 0
26. y = f (t - s)ea(t-s)g(s) ds 29. y = c1t + c2t2 + 4t2ln t
30. y = c11 1 + c2t 5 + 1121 31. y = c1(1 + t) + c2e^ + 1 (t  1)e2t
32. y = C1 e^ + C2^t  1 (2t  1)e ^
692
See SSM for detailed solutions to 2, 6
8, 9, 12, 17
19, 20, 23, 24
27, 29ac, 30a
1, 5, 7ac, 10, 11a
Section 3.8, page 197
1. u = 5 cos(2t  S), S = arctan(4/3) = 0.9273
2. u = 2cos(t  2n/3)
3. u = 2v/5cos(3t  S), S = arctan(1/2) = 0.4636
4. u = VTl' cos (n t  S), S = n + arctan(3/2) = 4.1244
5. u = 4cos8t ft, t in sec; a = 8 rad/sec, T = n/4sec, R = 1/4 ft
6. u = |sin14t cm, t in sec; t = n/14sec
7. u = (1/4V2) sin(^V2 t)  12 cos(8\/2 t) ft, t in sec; a = 8\/2 rad/sec,
T = n/4\fl sec, R = VTT/288 = 0.1954 ft, S = n  arctan(3/V2) = 2.0113
8. Q = 106cos2000t coulombs, t in sec
9. u = e10t[2cos(4\/6 t) + (5/V<5) sin(4\/6 t)] cm, t in sec;
H = 4\/6rad/sec, Td = n/2\/6sec, Td/ T = 7/2\[6 = 1.4289, r = 0.4045 sec
10. u = (1/8V3l)e2t sin(^\/3l t) ft, t in sec; t = n/2\/3lsec, r = 1.5927 sec
11. u = 0.057198e015t cos(3.87008 t  0.50709) m, t in sec; ^ = 3.87008 rad/sec,
M/«0 = 3.87008/VT5 = 0.99925
12. Q = 106(2e500t  e1000t) coulombs; t in sec
13. y = V20/9 = 1.4907
16. r = s/A2 + B2, rcos9 = B, rsin9 =  A; R = r; S = 0 + (4n + 1)n/2,
n = 0, 1, 2,...
17. y = 8 lb-sec/ft 18. R = 103 ohms
20. v0 < y u0/2m 22. 2n/\f3\
23. y = 5 lb-sec/ft 24. * = 6, v = ±2^/5
25. (a) r = 41.715 (d) y0 = 1.73, min r = 4.87
(e) r = (2/y) ln(400/V4  y2)
26. (a) u(t) = eYt/2m |^u^4*m  y2 cos nt + (2mv0 + y u0) sin^tj ^4km  y2
(b) R2 = 4m(ku0 + yu0v0 + mv02)/(4*m  y2)
27. plii" + P0gu = 0, T = 2n/pljp0g
28. (a) u = \/2 sin \/2 t (c) clockwise
29. (a) u = (16/V 127)esin(V 127 t/8) (c) clockwise
30. (b) u = a cos(^k/m t) + m/k sin(^k/m t)
32. (b) u = sin t, A = 1, T = 2n (c) A = 0.98, T = 6.07
(d) e = 0.2, A = 0.96, T = 5.90; e = 0.3, A = 0.94, T = 5.74
(f) e = -0.1, A = 1.03, T = 6.55; e = -0.2, A = 1.06, T = 6.90; e = -0.3, A = 1.11, T = 7.41
Section 3.9, page 205
1. 2sin8tsint 2. 2sin(t/2) cos(13t/2)
3. 2cos(3n t/2) cos(n t/2) 4. 2sin(7t/2) cos(t/2)
5. u" + 256u = 16cos3t, u(0) = 1, u'(0) = 0, u in ft, t in sec
6. u" + 10u' + 98u = 2 sin(t/2), u(0) = 0, u'(0) = 0.03, u inm, t in sec
7. (a) u = 1482 cos 16t + 247 cos 3t (c) a = 16 rad/sec
8. (a) u = i53128T[160e5t cos(V73 t) + e5t sin(V73 t)  160 cos(t/2) + 3128 sin(t/2)]
(b) The first two terms are the transient. (d) a = 4\f3 rad/sec
9. u = 45 (cos7t  cos8t) = H8 sin(t/2) sin(15t/2) ft, t in sec
10. u =(cos8t + sin8f  8t cos8t)/4ft, t in sec; 1/8, n/8, n/4, 3n/8sec
11. (a) 981 (30cos2t + sin2t) ft, t in sec (b) m = 4 slugs
12. u = (^2/6) cos(3t  3n/4) m, t in sec
See SSM for detailed solutions to 15 and 16
22 and 24
CHAPTER 4
2, 8, 13, 17, 19c
21, 27
2, 8, 12
15, 23
15.
F0(f - sin f),
F0[(2n - f) - 3 sin f], -4 F0 sin f,
-1000f
0 < f < n n < f < 2n 2n < f < ?
+ 3) coulombs, f in sec, Q(0.001) = 1.5468 x 10-
16. Q(f)  10-6(e-4000t - 4e Q(0.01) = 2.9998 x 10-6; Q(f) ^ 3 x 10-6 as f
17. (a) u  [32(2 - a2) cos at + 8« sin a>f]/(64 - 63a2 + 16«4)
(b) A  8/^64 - 63«2 + 16«4 (d) a  3VT4/8 = 1.4031,
A  64/VT27 = 5.6791
18. (a) u  3(cos f - cos af)/(a2 - 1)
19. (a) u  [(a2 + 2) cos f - 3 cos af]/(«2 - 1) + sin f
Section 4.1, page 212
1. -to < f < <x 2. f > 0 or f < 0
3. f > 1, or0 < f < 1, or f < 0 4. f > 0
5. ..., -3n/2 < x < -n/2, -n/2 < x < 1, 1 < x < n/2, n/2 < x < 3n/2,..
6. -to < x < -2, -2 < x < 2, 2 < x < ?
7. Linearly independent
8. Linearly dependent; f1(t) + 3 f2(f) - 2 f3(f) = 0
9
10
11
14
17
19
Linearly dependent; 2 f1(f) + 13 f2(f) - 3 f3(f) - 7 f4(f) = 0 Linearly independent
1 12. 1 13. 6e-
f = 1?(5) - 1 cos2f
15. 6x
16. 6/x
(a) a0[n(n - 1)(n - 2)  1] + a1[n(n - 1)  2]f + 
 + V
(b) (B0Fn + 31rn
 + )er'
(c) ef, e f, b21 , e 2f; yes, W(ef, e f, b21 , e 2f) = 0, -to < f <
00
21. W = ce-2t 23. W = c/f2 27. y = c1et + c2t + c3fef
Section 4.2, page 219
1 V2 e/[(n/4)+2mn ]
3 3ei(n+2mn)
5 2ei[(11n/6)+2mn ]
7. 1, 2 (1 + i^3), 2 (1  i^3)
9. 1 , i2, - 1 , - i 2
11. y = c1et + c2fef + c3e-t
13. y = c1et + c2e2t + c3e-t
15
16
17
18
19
20
22. W = c 24. W = c/f
28. y = c112 + c2f3 + c3(f + 1)
2 2ei [(2n/3)+2mn]
4 [(3n/2)+2mn]
6 4?F [(5n/4)+2mn]
8. 21/4e-ni/8, 21/4e7ni/8
10. (V3 + i)/V2, -(V3 + i)/V2
12. y = c1et + c2fet + c3f2et 14. y = c1 + c2f + c3e2t + c4fe2t
21
f + c2 sin f + ^v^t/2 (c3 cos 2 f + c4 sin 1 f) + e v^3t/2 (c5 cos 1 f + c6 sin 1 f) y = c1et + c2fet + c3f2et + c4e-t + c5fe-t + c6t2e-
Previous << 1 .. 295 296 297 298 299 300 < 301 > 302 303 304 305 306 307 .. 486 >> Next