Books
in black and white
Main menu
Home About us Share a book
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Curves and surfaces in computer aided geometric design - Yamaguchi F.

Yamaguchi F. Curves and surfaces in computer aided geometric design - Tokyo, 1988. - 390 p.
Download (direct link): curvesandsurfacesincomputer1988.djvu
Previous << 1 .. 83 84 85 86 87 88 < 89 > 90 >> Next

interpolation of a sequence of points 247 to 250, 325-327 matrix representation 327-329 properties 311,312 B-spline, B-spline function approximation 233-336 definition 270-273 normalized 273 recursive calculation 285-291 relation to Bernstein basis 293, 294
properties 270-274,291-294 variation diminishing property 294 B-spline curve type (1) 281, 282 B-spline curve type (2) 283 B-spline curve type (3) 294-296
Cartesian product surface patch 132, 133 Cauchyís relation 19 Chaikinís algorithm 320-325 Characteristic net 217 Characteristic polygon 173 Circular arc, circle approximation 78-80, 177, 178, 243-245 by Bezier curve segments 177, 178 by cubic B-spline curve segments 243 to 245
by Ferguson curve segments 78-80 passing through 3 points 354, 355 approximation error 80, 178 Common perpendicular, length 352, 353 Condition for determining a tangent vector to a curve on a surface 48 Conic section 337-346 Connection
of curve segments 33-35 of Bezier curve segments 213,214 of surface patches 57-59 of Ferguson surface patches 89-91 of Coons bi-cubic surface patches 96, 97, 107-109
of Bezier surface patches 221-226 Continuity, class C- 20, 44 Control point 16 Convex combination 171,241,274 Convex hull property 241, 311 Crease 15 C-spline 139
Cross partial derivative vector 98, 112 -122 Cubic spline curves 145-160 using circular arc length 159, 160 Curvature 24-27 Gauss- 51 normal 50 radius 25 principal 51 total 51
average(mean) 51
376
Subject Index
Curvature of a surface 49-51 Curvature vector 24-27 Curve defining polygon 173 Curve generation by geometric processing 320-325 Curve segment increase of degree 85, 86, 204-209 Bezier- 169-232 B-spline 233-334 conic section 337-346 cubic Bezier 169-182 cubic B-spline 233-251 geometrical relations among derivatives 342, 343
cubic/cubic rational polynomial 346, 347 Ferguson- 73-80 Hermite- 72-86 Lagrange- 64-71 non-uniform B-spline- 296 rational polynomial 337-350 √-ŮÓÝŮ 347-350 uniform cubic B-spline 233-251 Cusp 15 by cubic B-spline curve segments 245
De Boorís algorithm 312-315 Descartesí sign rule 192 Degeneration of a surface patch 44 formation of triangular surface patch 59 to 61 Derivatives of Bernstein polynomials 198,199 of Bezier curve segments 198, 199 of B-spline curve segments 309 311 Determination of a point
on a cubic Bezier curve segment 178, 179 by linear operations 199 204 on a B-spline curve segment by linear operations 312-315 Divided difference 67 interpolation formula with remainder (Newtonís formula) 68
Ellipse 340 Equation
of a normal plane 23 of an osculating plane 23 of a plane passing through 3 points 353 of a straight line segment 351 of a tangent plane 46 Error in approximating a circle 80, 178
Finite difference computation 32,33 determination of a point on a curve 32, 33
on a surface 51-55 matrix 33, 52-55 operator 32
representation of a Bezier curve segment 194, 195
First fundamental matrix of a surface 46-48
FMILL 89
Forrestís method 117
Frenet frame 29
Frenet-Serret formula 31
Functional determinant 44
Function
Bernstein basis- 182, 183, 189-193 blending- 77
B-spline- 236, 237, 270-273 Coons blending- 77 full spline basis- 291 Hermite- 72-83 truncated power- 138 uniform B-spline- 296
Gauss curvature 51 Gauss quadrature 42
Hermite interpolation 72-134 Hermite polynomial 72 -134 Hyperbola 340
Increase of degree
of a Bezier curve segment 204-209 of a Ferguson curve segment 85, 86 Independence of coordinate axes 12-14 Interpolation Hermite- 72-134 Lagrange- 64-71
of a sequence of points by a B-spline curve 247-250, 325-327 spline- 135-168 Intersection of 2 curves 43, 44 of a curve and a plane 43 of 3 planes 354 Invariance of shape under coordinate transformation 18, 19 Inverse transformation of a uniform cubic B-sphne curve 247-250, 325-327
Jacobian 44,60 62
Knot additional 272 extended 272 insertion 316-320 interior 272 pseudo 292 multiple 291 Kronecker delta 92
Subject Index
377
Lagrangeís formula 65 Leibnitzí formula 356 Length of a curve 42 on a surface 47 of common perpendicular 352, 353 Line segment
by a Bezier curve segment 176, 177 by a cubic B-spline curve segment 243 perpendicular bisector 351 Local uniqueness 242
Matrix boundary condition- 111 finite difference- 33, 52-55 first fundamental- (of a surface) 46-48 second fundamental- (of a surface) 50 Matrix representation of a B-spline curve segment 327-329 Marsdenís identity 358, 359 Mathematical model 3, 4 Minimal interpolation property 140 144 Model mathematical 3,4 physical 3,4 Moving frame 29
Net, surface defining- 217 Normal, principal- 23 Normal plane 23 equation 23 Normal vector, unit- 46 Normalized B-spline 273
Offset surfaces 63 Order of spline 136 Ordinary point 20 Osculating plane 23
Parabola 342 Parametric cubic curve 31 Parametric representation of a curve 20 of a surface 44 Partitioning
of cubic Bezier curve segments 179-182 of curve segments 39 of Coons bi-cubic surface patches 122, 123
of Ferguson curve segments 84,85 Pentagonal surface 9, 10 Perpendicular bisector of a line segment 351,352 Physical model 3, 4 Plane curve, condition to be 29 Plane
Previous << 1 .. 83 84 85 86 87 88 < 89 > 90 >> Next