Books
in black and white
Main menu
Home About us Share a book
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Curves and surfaces in computer aided geometric design - Yamaguchi F.

Yamaguchi F. Curves and surfaces in computer aided geometric design - Tokyo, 1988. - 390 p.
Download (direct link): curvesandsurfacesincomputer1988.djvu
Previous << 1 .. 56 57 58 59 60 61 < 62 > 63 64 65 66 67 68 .. 90 >> Next

MRBRMl = McBcMTc.
Solving this equation for Bc gives:
Bc = (MclMR)BR{M^MR)T.
6.2 Uniform Bi-Cubic -Spline Surfaces
253
We also have:
Therefore:
Bc =
1 2 1 0
1 0 6 2 1

Ur = 0 2 1 0
- 1 0 - 0 l _
6(0,0) 6(0,1) 6. (0,0) 6w(0,l)
6(1,0) 6(1) 6w(i,o) 6w(U)
6,(0,0) 6,(0,1) ft 0.0) 6uw(0,l)
6,(1,0) 6(U) Qu, (1,0) ftw(U)_
' 1 2 1 0
0 1 2 l

1 ~y 1 0 2 0
0 - 0 2 l _
"6i-i,j-: i -.. ft -1,7+1 Qi-\,j + 2
6,., i-l ,., Qi,j+1 Qi,J + 2
6^1,- 1 6i+l,j 6l+i,J+i 6i + 1,j + 2
_6t + 2,j- 1 Qi + 2,j 6t + 2, j + 1 6[ + 2, j + 2 _
0 2 0
2 l 0 1 1
1 ~
1 Z 1 0
0 1 0 1
This implies:
ltJ-l+^,rl+gft + l,r
(6.44)
254 6. The -Spline Approximation
2/1 2 1 \
+I(ga-1,J+Ia.J+ia+1,Jj
1/1 2 1 \
+ 6(6ft-1J+1 + 3ft'J+1 + 6ft + 1J + 1j
1/1 2 1 \
(01)=1--+-+^)
2/1 2 1 \
+ ^ Qi-i,j+i+jQi,j+i+-^Qi+i.j+i J
1/1 2 1 \
+ 6(6a-1'J+2 + 3a'J+2 + 6ft+1-J+2j
e(1,0)= (ia-J_1 +7a+1-J_1 + a+2'J_1)
2 2 1 A
+ 1'++,-'++2^
1/1 2 1 \
+ 6,j + l+y 6 + l,j + l+ g-6 + 2,J+l J
(1,1)=(^++1'++^) (6-44)
2/1 2 1 \
+ Qx,j + \+^Qx + \.j+\+-^Qx+2,j + \ J
+K^a-j+2+ia+i'j+2+ia+2-j+2)
a(00)=Kla+1'j-,ia-1'j-1)
2/1 1 \ 1/1 1 \
+ 3 \2^i + Uj ~2 ^17 + 6 (^y 6, + i.j + i-2-6,-i,; + iJ
a)=Kyft^-ia-J
2/1 1 \ 1 /1 1 \
+yl Qi+i,j+i~~^Qi-i,j+i Qi+ij+2~~2 0-1~^+2J
1/1 1 \ 2/1 1 \ ^(10)=6Uft+2-J"1_2e,*J-V + 3V2ft+2-J_2a-V
^/1 1
^ 1 2 Qi+2,j+i 2 Q,j + i
6.2 Uniform Bi-Cubic 5-Spline Surfaces 255
1/1 1 \ 2/1 1 \
Qu(U i) = Qi+2,j~~^Qi,} j+^y^-Qi+2 j+i-~^-Qi,j+ij
+Kia+2'J+2_2e"J+2)
1/1 2 1 \
Qw(0,0)-~ Ql-i,j+i+Qi,j+i+Ql+i,j+1j
1/1 2 1 \
Qw(0, 1) = Qi-1,j + 2 +y Qi,j + 2+ ~^Qi + 1,j + 2J
1/1 2 1 \
2l6ft-1'J+3ftj+6a + ,-JJ
1/1 2 1 \
0w(l,O)-y(^- Ql'j+i+Qi+i,j+1 +Qi+2,j+iJ
1/1 2 l \
21^-1 + &+1^1 + +2^7
1/1 2 1 \
Qwi 1, l)==2\6^,J+2+y , + lJ + 2+i^, + 2fJ + 2) (6)
1/1 2 1 \
~2\~6Q'-j+JQ, + u + ~6*2'j)
2 (^2 fii + ij-1 j'-1-'-1)
e.(o,D=i({a+i,J+2-ya-i.J+2) a(i,o)=i(ie(+2,J+1-{e,J+1)
256
6. The -Spline Approximation
(6.44)
Next, let us find the relation between the B-spline surface given by formula (6.41) and a Bezier bi-cubic surface patch (5.118). Equating formulas (6.42) and (5.118) gives:
Solving this equation for BB gives:
Bb = (Mb1Mr)Br(Mb'Mr)t.
We also have:
1 2 1
6
0
0
M-'MR= 0
1 2
1 2


6 3 6
Therefore:
6.2 Uniform Bi-Cubic -Spline Surfaces
257
a-i., Qi-i,j+i
X eM-i a., ft.,+1
O + i,j-i O + l,; a+iIJ+i
_0i + 2,j 1 Qi + 2,j Qi + 2,j + 1
Qi-1,j + 2
Qi,J + 2 Qi + 1,j + 2
1 6~ 0 0 0
2 2 1 1
J
l i 2 2

0 0 0 1
This implies:
1/1 2 1
0_(-1^1 + -1 + +1^
2/1 2 1
+ (,-1''+''+''
1/1 2 1
Qi-i,j+i+jQi.j+i+-jrQi+i.j+i
2 /1
6i-y^ 6rU + y6,j+gfl + i,j
1/1 2 1 C?02=y (jg -1,;+3-+^+1,.
2/1 2 1
+ I ~tQi-\,j+1 + + 1 +7 0 + l,7 + l
3 \6
1/1 2 1 e-=6Ua--+ie-+6a^.
2/1 2 1 + ft-ij + i+ jftj + i + gft + ij + i
1/1 2 1 + 1-+2 + -+2++1'+2
1 /2
2 /2
101-'-1 + +1"-+1"++1-
1 /2
+ 6\3^,4l + 3,lj
(6.45)
6. The -Spline Approximation
2 Qn=j (fe-+ia+i'j) 4( 2 1 ^ 6t,7 + l 2 ^ + 1>7 + 1
l &2=3 4( 2 1 ^ ^^t,7 + l + 1,7 + 1
1 .-g (f^+ja+u) *!( 2 1 ^ St^+i-^^ 61+1,j+i
+ K!a-4a + 1,7 + 2 )
a=6 /1 2 (^y Q^j-i+jQi+i ^ f'y' ^ ^
+ + 1,7 + 1 )
2 621 '+ 1 2 Si,j + 1 +y Qi + l,j + l
1 0.22 = (j- 6,7 + y fi. + l^j '4( 1 2 61,7+ 1 + 61 + 1,7 + 1
1 e23-g ( 3" 3" +1 l+f( 1 2 61, J + 1 + Ql + 1,7 +1
+ 1 /1 2 6l>7 + 2+y6l + l,7 + 2 )
630 = 6 /1 2 (^r Q1,j-i+jQ1+i,j-i +
2/1 2 1 +iUa-,+Ta+i'j+7
i
+ 6l6ftj*1 + 3e,,lj+l + 6a,2j
2/1 2 1
^31\" &+i-/+ 6^^t+2-i /1
+yUft-J+1+3a+1-J+1 + 6eH
1/1 2 1 ^32 = J\6 @lJ + J@l + 1J + ~6@l+2-
6.2 Uniform Bi-Cubic -Spline Surfaces
"(-'++1''+!+2''
(6.45)
2 / 1
+ 3^6 QJ + l + ^ @1 + 1J + 1 ^ Qi + 2,j + \
1 2 1 + \^)Q,J + 2+^Qi + 1,j + 2+ -^Qi + 2,j + 2
6.2.2 Determination of a Point on a Surface by Finite Difference Operations
When a 5-spline surface patch is given by formula (6.41), then, using the abbreviation NiA(t) = Nt{t), the finite difference matrices , , and D given by Eqs. (1.113), (1.114), (1.115) and (1.116) are, respectively, as follows.
Finite difference matrix A is:
^(0,0)
r^4(0>0)
1
-2(0)
S3
3](0,0)
N0 (0)
N i(0)
N2(0)
N3(0)
]rAN0( 0) ^AN,( 0) ^AN2( 0) \aN3( 0)
0 0 0 0
^2N0(0) ^H2N2(0) -^-A2N3(0)
^3-zl3No(0) -jy A3N, (0) ^32(0) 0)
re,-,.,-, a-i., 6t lj+1 ??i-1,j + 2 "No(0r
a.,-, a., a.7+i Qi,J + 2 N,(0)
6t + i,j-i Qi+i.j+1 + 1,7 + 2 iV2(0)
_6t + 2,j-l 6i + 2,j 6t + 2,j + l 6t+2,j + 2_ _iY3(0)_
(6.46)
Denoting differences in the w-direction by V, finite difference matrix is 1
1
-F/y0,0)
^(0,0))
-pV(A2PtJ{ 0,0))
<S4
P(zl3P[7(0,0))
^Vo(0)
N i(0)
N2(0)
N3( 0) r AN3 (0)
1
]rAN0( 0) -ANM ]rAN2( 0)

^zl2No(0) J2N,(0) j2n2(0) ^2N3(0)
^/l3No(0) Jj-J3N,(0) ^3JV2(0) ^3N3(0)
Previous << 1 .. 56 57 58 59 60 61 < 62 > 63 64 65 66 67 68 .. 90 >> Next