Books
in black and white
Main menu
Home About us Share a book
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Curves and surfaces in computer aided geometric design - Yamaguchi F.

Yamaguchi F. Curves and surfaces in computer aided geometric design - Tokyo, 1988. - 390 p.
Download (direct link): curvesandsurfacesincomputer1988.djvu
Previous << 1 .. 49 50 51 52 53 54 < 55 > 56 57 58 59 60 61 .. 90 >> Next

This connection condition expresses the fact that on the No. 2 surface
patch must lie on the tangent plane to a point on the boundary curve of No. 1 surface patch. Equation (5.132) becomes the following:
5. The Bernstein Approximation
[0 0 1 0]MA;1IM?
V V
w2 = A?(w)[3 2 1 0]MBBBlM^ w2
w w
1 1
+ y(w)[l 1 1 %
'3w
2w
1
0
(5.133)
If we assume that both of the surface patches are bi-cubic, then, for the same reason as before, /i(w) is an arbitrary positive scalar /. Also, y(w) can be expressed as the linear form (w) = yo + 7iw- In this case, the left-hand side of Eq. (5.133) becomes:
= [0 0 1 0]
-1
i 3 -3 1"
1 -6 3 0
S 3 0 0
0 0 0
3 [w3 w2 w 1]
1 Ml [w3 w2 w l]r
3 -3 611,00 611,01 611,02 6l,,03
-6 3 0 611,10 611,11 611,12 6,13
3 0 0 611,20 611,21 6,1,22 611,23
0 V ...2 0 0 _ 611,30 611,31 6,1,32 611,33.
611,00
3 Q
n,oi + 3 Qu,02 Qn, + 3 Qll
,n 3flu2+e n,i: 3 6II>00 + 60II)O1 3 6ll,02 + 3 611,10 ^ Qll,11 + 3 Qll, 12 3 611,00 3 611,01 3 611,10 + 3 611,11 611,00 + 611,10
The 1-st term on the right-hand side of Eq. (5.133) is:
1-st term on the right-hand side = n(w) [3 2 1 0] % [w3 w2 w l]r
= [3 2 1 0]
-1 3 -3 61,00 61,01 61,02 61,03
3 -6 3 0 61,10 61,11 61,12 61,13
-3 3 0 0 61,20 61,21 6,22 61,23
1 0 0 0 _6l,30 61,31 6l,32 6,,3 3_
5.2 Surfaces
225
-1 3 -3 1" 'w3'
3-630 w2
-3 3 0 0 w
1 0 0 0 1
= 3 [w3 w2 w 1]
^(Ql,20~~^ Ql,21 + 3 01,22 Ql,23 ~~ Ql,30 + 3 01,31 3 01,32 + 01,) ^( 3 Qj 20 + 6 Q121 3 0122 + 3 01,30 6 Ql z t + 3 0lj32) /^(301,20-301,21 3 01,30 + 3 01>3i)
01,20 + 01,3o)
The 2-nd term on the right-hand side of Eq. (5.133) is:
2-nd term on right-hand side = y(w) [1 1 1 11 [3w2 2w 1 0]T
-1 3 -3 01,00
3 -6 3 0 01,10 01,20
( + yiW) [1 1 1 1] -3 3 0 0
1 0 0 0 _0I,3O
-1 3 -3 "0 3 0 O' 'w3'
3 -6 3 0 0 0 2 0 w2
X -3 3 0 0 0 0 0 1 w
1 0 0 0 0 0 0 0 1
01,01 01,02 01,03
01,11 01,12 01,13
01,21 01,22 01,23
01,31 01,32 01,33
= 3 [w3 w2 w 1]
l( 01,30 + 3 01,31 3 01,32 + 01,3)
( 01, + 3 0i,3i-3 0!,32 + 0i,33) + 7i (20i,3O 40i,3i +2 0I>32)
7o(20i,3o 40i,3i +20I)32) + 7i(0i,3o + 0i,3i)
7o( 01, + 0i, 31)
Comparing the constant terms on both sides of Eq. (5.133) we obtain:
0ii,io 0ii,oo = ^(0i,3o 0i,2o) + 7o(0i,3i 0i,)- (5.134)
Next, comparing the coefficients of the w terms:
3 0ii,oo 3 0ii,oi 3 0h,io + 30H,u (3 0i,2o 3 0i,2i 3 01, + 3 0i,3i)
+ (2 0i,-40i,3i +20I;32)
+ yi( 0i, 3o + 0i, 3i)-
226
5. The Bernstein Approximation
Rearranging terms and using Eq. (5.134):
(5.135)
Similarly, when the coefficients of the w2 and w3 terms are compared the following 2 equations are obtained:
In the above 4 equations, (5.134), (5.135), (5.136) and (5.137), setting yo = y1=0 we can confirm that these reduce to Eq. (5.131).
The geometrical significance of Eq. (5.134) is that 611,10 f the No. 2 surface patch lies on the plane formed by the vectors 61,30 61,20 and 61,31 61,30 f the No.l surface patch (refer to Fig. 5.35). Similarly, the significance of Eq. (5.137) is that 611,13 f the No. 2 surface patch lies on the plane formed by
6l,33 6l,23 an<i 6l,33 6l,32-
The geometrical interpretation of Eq. (5.135) and (5.136) is not as simple as the above 2 cases.
5.2.4 Triangular Patches Formed by Degeneration
When a triangular surface patch is to be expressed by an oridnary quadrangular Bezier surface patch, let us consider the conditions for the unit normal
(5.136)
611,13 611,03 /^(61,33 61,23) + ( + i) (61,33 61,32)- (5.137)
Fig. 5.35. Connection of cubic Bezier surface patches (general method)
5.2 Surfaces
227
vector at the degenerate point to be uniquely determined (refer to Sect. 1.3.8). Assume that we are dealing with a bi-cubic Bezier surface patch. Then we have:
P(u,w)=UMBBBMlWT
Pu(0, w) in Eq. (1.128) can be found to be:
PB(0,w) = [0 0 1 0~]MBBBMl[_w3 w2 w 1]T
= 0?3( (~) + 3Blj3(w) (6ii 601)
+ 3#2,0^) {Q\2~ Qoi) + ^,3(w) (1-)-
In Fig. 5.36, at the degenerate point D we have Q0o = Qoi==Qo2 = Qo3^ so:
^(^^-^ (Cio~Coo) + 3Blj3(w) (fin-Coo)
+ 3B2j3{w) (Q12 Coo)+ 3 #3,3 (w) (Ci3-Coo)- (5.138)
We also have, for PMW(0,w):
0,W) = [0 0 1 0] MBBBMl [3w2 2w 1 or
~32?0?3(w) ( Coo) + 32?13(w) (fin-fioo)
+ 3B2f3(w) (12-00) + 3. (fiia-fioo). (5.139)
As can be seen from Eqs. (5.138) and (5.139), P(0,w) and Puw(0,w) are both
expressed as linear combinations of the four vectors Ci0 fi0o> Qn~Qoo^
Ci2 Coo and C13-O00. From the properties of a Bezier surface, the direction of the tangent of curve P(u, 0) at point D coincides with the direction of 610 600? also> the direction of the tangent to curve P(u, 1) at point D coincides with the direction of fii3 Q00, so the tangent plane at point D is formed by these 2 vectors. Therefore, if fiu and fi12 lie on this plane, then
228
5. The Bernstein Approximation
Fig. 5.37. Application of a degenerate Bezier surface patch (rounded convex corner). D, degenerate point of patch; , surface defining point Qtj
Previous << 1 .. 49 50 51 52 53 54 < 55 > 56 57 58 59 60 61 .. 90 >> Next