Books in black and white
 Books Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

The art of error correcting coding - Moreloz R.H.

Moreloz R.H. The art of error correcting coding - Wiley publishing , 2002. - 232 p.
ISBN 0471-49581-6
Previous << 1 .. 70 71 72 73 74 75 < 76 > 77 78 79 80 81 82 .. 86 >> Next

COMBINING CODES AND DIGITAL MODULATION
193
Figure 125 The encoder structure of a turbo TCM scheme with symbol interleaving.
Figure 126 An iterative decoder for turbo TCM with symbol interleaving.
block diagram of the encoder structure is shown in Figure 127, for the case of two component codes.
MAP decoding and bit metrics
The decoder structure for turbo TCM with bit interleaving is similar to that of binary turbo codes. The main difference is that conversion of LLRs from bits to symbols, and from symbols to bits, needs to be performed between decoders [BDMP2, Vuc]. For decoding of turbo TCM with bit interleaving, the LLRs that are computed per bit need to be converted to a symbol level a-priori probability. Also, the a priori probabilities per symbol need to be converted to a bit level extrinsic LLR’s.
This is done in the following way. Let X denote the 2*'-ary modulation signal set. For a symbol x(b) <E X with label b = (l>i,b-2, ? ? ? .bv), the extrinsic information of bit bi, i = 1, 2, • • ?, v, is computed as
A e{bi) = log
x(b),bi~ 1
eAe(x(6))
\x(b),bi— 0 /
(9.16)
194
THE ART OF ERROR CORRECTING CODING
(v - 1 - k )/2 bits
(v - 1 - k )/2 bits
v
bits
Figure 127 Encoder for turbo TCM with bit interleaving.
Similarly, the a-priori symbol probability can be computed from the extrinsic LLR at the bit level through the expression,
>biAe(bi
i=l
_f_ gAe(&i)
(9.17)
The Art of Error Correcting Coding Robert H. Morelos-Zaragoza Copyright © 2002 John Wiley & Sons Ltd ISBNs: 0-471-49581-6 (Hardback); 0-470-84782-4 (Electronic)
References
[BCJR] L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate,” IEEE Trans. Info. Theory, vol. IT-20, pp. 284-287, Mar. 1974.
[BP] A. S. Barbulescu and S. S. Pietrobon, “Interleaver Design for Turbo Codes,” Elect. Letters, vol. 30, no. 25, pp. 2107-2108, Dec. 1994.
[Bat] G. Battail, “A Conceptual Framework for Understanding Turbo Codes,” IEEE J. Sel. Areas in Comm., vol. 16, no. 2, pp. 245-254, Feb. 1998.
[BB] S. Benedetto and E. Biglieri, Principles of Digital Transmission, Kluwer Academic/Plenum Publishers, 1999.
[BM] S. Benedetto and G. Montorsi, “Unveiling Turbo Codes: Some Results on Parallel Concatenated Coding Schenes,” IEEE Trans. Info. Theory, vol.42, no. 2, pp. 409-428, March
1996.
[BDMP1] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding,” IEEE Trans. Info. Theory, vol. 44, no. 3, pp. 909-926, May 1998.
[BDMP2] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara, “Parallel Concatenated Trellis Coded Modulation,” Proc. 1996 IEEE Int. Conf. Comm. (ICC’96), pp. 974-978, 1996.
[Berl] E. R. Berlekamp, Algebraic Coding Theory, rev. ed., Aegean Park Press, 1984.
[Ber2] E. R. Berlekamp, “Bounded Distance + 1 Soft-Decision Reed-Solomon Decoding,” IEEE Trans. Info. Theory, vol. 42, no. 3, pp. 704-720, May 1996.
[BG1] C. Berrou and A. Glavieux, “Reflections on the Prize Paper: ‘Near Optimum Error-Correcting Coding and Decoding: Turbo Codes’,” IEEE Info. Theory Soc. News., vol. 48, no. 2, June 1998.
[BG2] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding and Decoding,” IEEE Trans. Comm., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.
[BGT] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes,” Proc. 1993 IEEE Int. Conf. Comm. (ICC'93), pp. 10641070, Geneve, Switzerland, May 1993.
[BDMS] E. Biglieri, D. Divsalar, P. J. McLane and M. K. Simon, Introduction to Trellis-Coded Modulation with Applications, Macmillan Publishing, 1991.
[Blah] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, 1984.
[BL] M. Blaum, “A Family of Efficient Burst-Correcting Array Codes,” IEEE Trans. Info. Theory, vol. 36, no. 3, pp. 671-675, May 1990.
[BZ] E.L. Blokh and V.V. Zyablov, “Coding of Generalized Concatenated Codes,” Probl. Pered. Informatsii, vol.10, no.l, pp. 45-50, 1974.
[BABSZ] M. Boo, F. Arguello, J. D. Bruguera, R. Doallo and E. L. Zapata, “High-Performance VLSI Architecture for the Viterbi Algorihtm,” IEEE Trans. Comm., vol. 45, no. 2, pp. 168-176, Feb. 1997.
196
REFERENCES
[Bos] M. Bossert, Channel Coding for Telecommunications, John Wiley & Sons, 1999.
[BH] M. Breiling and J. B. Huber, “Combinatorial Analysis of the Minimum Distance of Turbo Codes,” IEEE Trans. Info. Theory, vol. 47, no. 7, pp. 2737-2750, Nov. 2001.
[Bro] A. E. Brouwer and T. Verhoeff, “An Updated Table of Minimum-Distance Bounds for Binary Linear Codes,” IEEE Trans. Info. Theory, vol. 39, no. 2, pp. 662-677, Mar. 1993. [BW] H. O. Burton and E. J. Weldon, Jr., “Cyclic Product Codes,” IEEE Trans. Info. Theory, vol. IT-11, no. 3, pp. 433-439, July 1965.
[CCG] J. B. Cain, G. C Clark and J. M. Geist, “Punctured Convolutional Codes of Rate (n— 1 )/n and Simplified Maximum Likelihood Decoding,” IEEE Trans. Info. Theory, vol. IT-25, pp. 97100, Jan. 1979.
Previous << 1 .. 70 71 72 73 74 75 < 76 > 77 78 79 80 81 82 .. 86 >> Next