Books
in black and white
Main menu
Home About us Share a book
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

An introduction to ergodic theory - Walters P.

Walters P. An introduction to ergodic theory - London, 1982. - 251 p.
Download (direct link): anintroduction1982.djvu
Previous << 1 .. 90 91 92 93 94 95 < 96 > 97 98 .. 99 >> Next

R. E. Bowen
[1] Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153, 401-414 (1971).
[2] Equilibrium States and the Ergodic Theory of Anosov Dijfeomorphism. Springer Lecture Notes in Math. 470, 1975.
240
Relt-renees
241
[3] On Axiom A diffeomorphisms. Amer. Math. Soc. Regional Conf. Proc., No. 35, 1978.
[4] Periodic points and measures for Axiom A diffeomorphism. Trans. Amer. Math. Soc. 154, 377-397(1971).
[5] Some systems with unique equilibrium states. Math. Systems Theory 8, 193-202 (1974).
[6] Hausdorff dimension of quasi-circles. IHES Pub. 50, 259-273 (1979).
R. E. Bowen and B. Marcus
[1] Unique ergodicity of horocycle foliations. Israel J. Math. 26, 43-67 (197V).
R. E. Bowen and P. Walters [1] bxpansiv; onj-parameter flows. J. Diff. Equations 12, 180-193 (1972).
J. R. Brown
[I] Ergodic Theory and Topological Dynamics. Academic Press, New York, 1976. R. V. Chacon
[1] Transformations having continuous spectrum. J. Math and Mech. 16, 399-416 (1966).
H. Chu
[1] Some results on affine transformations of compact groups. Invent. Math. 28, 161-183(1975)
J. Cla.k
[1] A Kolmogorov shift with no roots. PhD. Thesis, Stanford Univ., Stanford, C. A. 1971. 4 J-P. Conze
[1] Extensions de systemes dynamiques par des endomorphismes de groupes compacts. Ami. Inst. H. Poincaie 268, 33-66 (1972).
M. Denker, C. Grillenberger and K. Sigmund [1] Ergodic Theory on Compact Spaces. Springer Lecture Notes in Math. 527,1976. Y. Derriennic
[1] Sur le theoreme ergodique sous-additif C.R.A.S. Paris 281A, 985-988, (1975).
E. I Dinaburg
[1] The reLtion between topological entropy and metric entropy. Soviet Math. 11, 13 16(1970)
N. Dunford and J. T. Schwartz f l"| / incur Operator Part I. Iuterscicncc, New York, 1958.
R. 1 Ilis
[1J lopologiail Dynamics. Benjamin, New York, 1969.
J. Hcidinan and С. C. Moore [1] Ergodic equivalence relations, cohomology and von Neumann algebras I,II. Trans. Amer. Math. Soc. 234, 289-324, 325-359 (1977).
W. Feller
[1] An Introduction to Probability Theory and Its Applications Vol 1, 2nd ed. Wiley, New York, 1957.
N. A. Friedman
[1] Introduction to Ergodic Theory Van Nostrand, 1970 N. A. Friedman and D. S. Omstein [1] On isomorphism of weak Bernoulli transformations. Advances in Math. 5, 365-394(1970)
H. Furstenberg
[1] Strict ergodicity and transformations of the torus. Amer. J. Math 83, 573-601 (1961)
[2] Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton Univ Press. 1981
H. Furstenberg and B. Weiss
[1] Topological dynamics and combinatorial nurrber theory. J. d'Analyse Math 34, 61-85 (1978).
242
References
F. R. Gantmacher [1] Applications of the Theory of Matrices. Intel jcienc-, New York, 1959.
C. Grillenberger
[1] Ensembles minimaux sans mesure d’entropie maximale. Monatsh. Math. 32, 275-285 (1976).
F. J. Hahn and Y. Kaiznelson [1] On the entropy of uniquely ergodic transformations. Trans. Amer. Math. Soc. 126,335-360(1967).
F. J. Hahn and W. Parry
[1] Minimal dynamical systems with quasi-discrete spectrum. J. London Math. Soc. 40, 309-323 (1965).
[2] Some characteristic properties of dynamical systems with quasi-discrete spectrum. Math. Systems Theory 2, 179 -190 (1968).
P. Halmos
[1] Lectures on Ergodic Theory. Chelsea, New York, 1953.
[2] Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York, 1957.
E. Hewitt and K. A. Ross
[1] Abstract of Harmonic Analysis Vol 1. Springer-Verlag, 1963.
A. H. M. Hoare and W. Parry
[1] Affine tiansformations with quasi-discrete spectrum I and II. J. London Math. Soc. 41, 88-96 (1966) and 41, 529 -530 (1966).
F. Hofbauer
[1] Examples of the nonuniqueness of the equilibrium state. Trans. Amer. Math. Soc. 228, 223 241 (1977).
E. Hopf
[1] Ergodentheorie, Chelsea, New York, 1937.
P. Hulse
[1] On the sequence entropy of transformations with qudsi-discrete spectrum. J. London Math. Soc. 20, 128-136 (1979'
R. B.Israel
[I] Convexity in the Theory of Lattice Gases. Princeton Series in Physics, Princeton Univ Press . 1979.
K. Jacobs
[I ] Nmr nwihotlc millergrhnisse dvr eryudcnthcorie, Spiingcr-Vcrhg, Berlin, I960. [2J I i i lttre Noitw on Ergodic Theory (2 vols.) Aarhus Univ., 1У63 R. 1 Jewett
[1] The prevalence of uniquely ergodic systems. J. Math, and Mechanics 19,717-729
(1970).
S. Kakutani
[1] Examples of ergodic measure-preserving transformations which are weakly mi ting but not strongly mixing Springer Lecture Notes in Math. 318, 143-149, (1973)
S. Kalikow
[1] The T — T-1 transformation is not loosely Bernoulli. Annals- Math., to appear.
I. Kaplansky
[1] Groups with representations of bounded degree. Can. J. Math. 1, 105-112 (1949).
A. B. Katok
[1] Lyapunov exponents, entropy and periodic points for diffeomorphisms. IHES Pub 51, 137-173 (1980).
A. B. Katok, Ya. G. Sinai and A. M. Stepin
[1] Theory of dynamical systems and general transformation groups with invariant measure. J. Soviet Math 7, 974-1041 (1977).
Previous << 1 .. 90 91 92 93 94 95 < 96 > 97 98 .. 99 >> Next