in black and white
Main menu
Share a book About us Home
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

biopharmaceuticals biochemistry and biotecnology - Walsh G.

Walsh G. biopharmaceuticals biochemistry and biotecnology - John Wiley & Sons, 2003. - 572 p.
ISBN 0-470-84327-6
Download (direct link): biochemistryandbiotechnology2003.pdf
Previous << 1 .. 88 89 90 91 92 93 < 94 > 95 96 97 98 99 100 .. 292 >> Next

Immunological approaches to detection of contaminants
Most recombinant biopharmaceuticals are produced in microbial or mammalian cell lines. Thus, although the product is derived from a human gene, all product-unrelated contaminants will be derived from the producer organism. These non-self-proteins are likely to be highly immunogenic in humans, rendering their removal from the product stream especially important. Immunoassays may be conveniently used to detect and quantify non-product-related impurities
in the final preparation (immunoassays generally may not be used to determine levels of product-related impurities, as antibodies raised against such impurities would almost certainly cross-react with the product itself).
The strategy usually employed to develop such immunoassays is termed the ‘blank run approach’. This entails constructing a host cell identical in all respects to the natural producer cell, except that it lacks the gene coding for the desired product. This blank producer cell is then subjected to upstream processing procedures identical to those undertaken with the normal producer cell. Cellular extracts are subsequently subjected to the normal product purification process, but only to a stage immediately prior to the final purification steps. This produces an array of proteins which could co-purify with the final product. These proteins (of which there may be up to 200, as determined by 2-D electrophoric analysis) are used to immunize horses, goats or other suitable animals. Polyclonal antibody preparations capable of binding specifically to these proteins are therefore produced. Purification of the antibodies allows their incorporation in radioimmunoassay or enzyme-based immunoassay systems, which may subsequently be used to probe the product. Such multi-antigen assay systems will detect the sum total of host cell-derived impurities present in the product. Immunoassays identifying a single potential contaminant can also be developed.
Immunoassays have found widespread application in detecting and quantifying product impurities. These assays are extremely specific and very sensitive, often detecting target antigen down to p.p.m. levels. Many immunoassays are available commercially and companies exist which will rapidly develop tailor-made immunoassay systems for biopharmaceutical analysis.
Application of the analytical techniques discussed thus far focuses upon detection of proteinaceous impurities. A variety of additional tests are undertaken which focus upon the active substance itself. These tests aim to confirm that the presumed active substance observed by electrophoresis, HPLC, etc. is indeed the active substance, and that its primary sequence (and to a lesser extent, higher orders of structure) conform to licensed product specification. Tests performed to verify the product identity include amino acid analysis, peptide mapping, N-terminal sequencing and spectrophotometric analyses.
Amino acid analysis
Amino acid analysis remains a characterization technique undertaken in many laboratories, particularly if the product is a peptide or small polypeptide (molecular mass 4 10 000 Da). The strategy is simple — determine the range and quantity of amino acids present in the product and compare the results obtained with the expected (theoretical) values. The results should be comparable.
The peptide/polypeptide product is usually hydrolysed by incubation with 6N HCl at elevated temperatures (110°C), under vacuum, for extended periods (12-24 h). The constituent amino acids are separated from each other by ion-exchange chromatography, and identified by comparison with standard amino acid preparations. Reaction with ninhydrin allows subsequent quantification of each amino acid present.
While this technique is relatively straightforward and automated amino acid analysers are commercially available, it is subject to a number of disadvantages that limit its usefulness in biopharmaceutical analysis. These include:
• hydrolysis conditions can destroy/modify certain amino acid residues, particularly tryptophan, but also serine, threonine and tyrosine;
• the method is semi-quantitative rather than quantitative;
• sensitivity is at best moderate; low-level contaminants may go undetected (i.e. not significantly alter the amino acid profile obtained), particularly if the product is a high molecular mass protein.
These disadvantages, along with the availability of alternative characterization methodologies, limit application of this technique in biopharmaceutical analysis.
Peptide mapping
A major concern relating to biopharmaceuticals produced in high-expression recombinant systems is the potential occurrence of point mutations in the product’s gene, leading to an altered primary structure (i.e. amino acid sequence). Errors in gene transcription or translation could also have similar consequences. The only procedure guaranteed to detect such alterations is full sequencing of a sample of each batch of the protein; a considerable technical challenge. Although partial protein sequencing is normally undertaken (see later) the approach most commonly used to detect alterations in amino acid sequence is peptide (fingerprint) mapping.
Previous << 1 .. 88 89 90 91 92 93 < 94 > 95 96 97 98 99 100 .. 292 >> Next