Books
in black and white
Main menu
Home About us Share a book
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Organic syntheses vol 58 - Sheppard W.A.

Sheppard W.A., Buchi G.H. Organic syntheses vol 58 - Wiley, 1978. - 123 p.
Download (direct link): organicsynthesesvol581978.pdf
Previous << 1 .. 44 45 46 47 48 49 < 50 > 51 52 53 54 55 56 .. 93 >> Next

13. This material has infrared and nuclear magnetic resonance spectra identical to those of an authentic sample prepared by the procedure of Stuebe and Lankelma.4
3. Discussion
The disulfide linkage is found in a large number of natural products,5 and chemical manipulations of this functionality are of considerable interest.6 In contrast to desulfurization methods utilizing various phosphines7 and phosphites,8 aminophosphines have proven to be efficient desulfurizing agents for a variety of alkyl, aralkyl, alicyclic, and certain diaryl disulfides.9 In addition, the reaction conditions are mild enough to be compatible with a variety of common functional groups. Hence, the desulfurization procedure given here for benzyl disulfide merely demonstrates the practibility of this method for which the synthetic scope and mechanism have already been developed.9
1. Department of Chemistry, McGill University, P.O. Box 6070, Montreal, Quebec, Canada H3C 3G1.
2. F. H. McMillan and J. A. King, J. Amer. Chem. Soc., 70, 4143 (1948).
3. C. Forst, Justus Liebigs Ann. Chem., 178, 370 (1875).
4. C. Stuebe and H. P. Lankelma, J. Amer. Chem. Soc., 78, 976 (1956).
5. (a) L. Young and G. A. Maw, “The Metabolism of Sulfur Compounds,” John Wiley & Sons, New York, N. Y., 1958; (b) R. F. Steiner, “The Chemical Foundations of Molecular Biology,” D. Van Nostrand Company, Princeton, N. J., 1965; (ń) K. G. Stern and A. White, J. Biol. Chem., 117, 95 (1937); (d) K. Jost, V. Debabov, H. Nesvadba, and J. Rudinger, Collect. Czech. Chem. Commun., 29, 419 (1964).
6. (a) W. A. Pryor and K. Smith, J. Amer. Chem. Soc., 92, 2731 (1970); (b) J. L. Kice, “Mechanisms of Reactions of Sulfur Compounds,” Vol. 3, John Wiley & Sons, New York, N. Y., 1968, p. 91; (c) N. Kharasch and A. J. Parker, Q. Rep. Sulfur Chem., 1, 285 (1966); (d) N. Kharasch, Ed., “Organic Sulfur Compounds,” Vol. 1, Pergamon Press, New York, N. Y., 1961; (e) A. J. Parker and N. Kharasch, Chem. Rev.. 59, 583, 589 (1959).
7. (a) A. Schonberg, Chem. Ber., 68,163 (1935); (b) A. Schonberg and M. Barakat, J. Chem. Soc., 892 (1949); (c) F. Challenger and D. Greenwood, J. Chem. Soc., 26 (1950); (d) C. Moore and B. Trego, Tetrahedron, 18, 205 (1962).
PREPARATION OF DIALKYL AND ALKYL ARYL SULFIDES
143
8. (a) H. Jacobson, R. Flarvey, and E. V. Jensen, J. Amer. Chem. Soc.. 77, 6064 (1955); (b) A. Poshkus and J. Flerweh, J. Amer. Chem. Soc., 79, 4245 (1957); (ń) C. Walling and R. Rabinowitz, J. Amer. Chem. Soc., 79, 5326 (1957); (d) C. Walling and R. Rabinowitz, J. Amer. Chem. Soc., 81, 1243 (1959); (e) C. Moore and B. Trego, J. Chem. Soc., 4205
(1962); (?) R. Harvey, H. Jacobson, and E. Jensen, J. Amer. Chem. Soc., 85, 1618
(1963); (g) K. Pilgram, D. Phillips, and F. Korte, J. Org. Chem., 29, 1844 (1964); (h) K. Pilgram and F. Korte, Tetrahedron, 21, 203 (1965); (i) A. J. Kirby, Tetrahedron, 22, 3001 (1966); (j) R. S. Davidson, J. Chem. Soc., C. 2131 (1967).
9. D. N. Harpp and J. G. Gleason, J. Amer. Chem. Soc., 93, 2437 (1971).
Appendix
Chemical Abstracts Nomenclature (Collective Index Number; Registry Numbers)
Benzyl sulfide (8); Benzene, l,l'-[thiobis(methylene)]bis- (9); (538-74-9)
Phosphorus triamide, hexamethyl- (8,9); (1608-26-0)
Benzyl disulfide (8); Disulfide, dibenzyl (8); Disulfide, bis(phenylmethyl)- (9); (150-60-7)
Tris(dimethylammo)phosphine sulfide: Phosphorothioic triamide, hexamethyl- (8,9); (3732-82-9)
Phosphorus triamide, hexaethyl- (8,9); (2283-11-6)
SULFIDE SYNTHESIS IN PREPARATION OF DIALKYL AND ALKYL ARYL SULFIDES: NEOPENTYL PHENYL SULFIDE (Benzene, [(2,2-dimethyIpropyl)thio]-)
(CH3)3CCH2Br + C6H5SNa C6H5SCH2C(CH3)3+NaBr
Submitted by D. Landini and F. Rolla1 Checked by Ronald L. Sobczak and S. Masamune
1. Procedure
A 100-ml., two-necked flask is fitted with a reflux condenser, a gas inlet, and a magnetic stirrer. The flask is charged with 12.0 ml. (15.1 g., 0.1 mole) of 1 -bromo-2,2-dimethylpropane (Note 1), aqueous sodium benzenethiolate (0.1 mole) (Note 2), and 1.67 g. (0.0033 mole) of tributylhexadecylphosphonium bromide (Notes 3 and 4). This mixture is heated at 70° with vigorous stirring under
144
ORGANIC SYNTHESES—VOL. 58
nitrogen (Note 5) for 3.5 hours (Note 6). After the mixture has cooled to room temperature, the organic layer is separated and the aqueous phase is extracted with two 20-ml. portions of ethyl ether. The combined organic phases are washed with 20 ml. of aqueous 10% sodium chloride and dried over calcium chloride. After removal of the solvent, the resulting residual oil is distilled through a 10-cm. Vigreux column to give 14.1-15.3 g. (78-85%) of colorless neopentyl phenyl sulfide (Note 7), b.p. 85-87° (5 mm.), 96-98° (8 mm.); n24d 1.5365 (Note 8).
2. Notes
1. l-Bromo-2,2-dimethylpropane (neopentyl bromide) was obtained from Fluka A G or Tridom Chemical Inc.
2. Aqueous sodium benzenethiolate was prepared by adding
10.2 ml. (11.0 g., 0.1 mole) of commercial benzenethiol (listed as thiophenol by Aldrich Chemical Company, Inc. and Tridom Chemical Inc.) to an ice-cold solution of 4.0 g. of sodium hydroxide in 25 ml. of water.
Previous << 1 .. 44 45 46 47 48 49 < 50 > 51 52 53 54 55 56 .. 93 >> Next