in black and white
Main menu
Share a book About us Home
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Reviev in Computational Chemistry vol 19 - Lipkowitz K.B.

Lipkowitz K.B. Reviev in Computational Chemistry vol 19 - John Wiley & Sons, 2003. - 410 p.
Download (direct link): reviewsincomputationalchemistryvolume192003.pdf
Previous << 1 .. 148 149 150 151 152 153 < 154 > 155 156 157 158 159 160 .. 183 >> Next

207. L. Belloni, M. Drifford, and P. Turq, Chem. Phys., 83,147 (1984). Counterion Diffusion in Polyelectrolyte Solutions.
342 The Poisson-Boltzmann Equation
208. G. Lamm, L. Wong, and G. R. Pack, Biopolymers, 34,227 (1994). Monte Carlo andPoisson-Boltzmann Calculations of the Fraction of Counterions Bound to DNA.
209. G. R. Pack, L. Wong and G. Lamm, Biopolymers, 49, 575 (1999). Divalent Cations and the Electrostatic Potential around DNA: Monte Carlo and Poisson-Boltzmann Calculations.
210. D. Dolar and A. Peterlin, J. Chem. Phys., 50, 3011 (1969). Rodlike Model for a Polyelectrolyte Solution with Mono- and Divalent Counterions.
211. M. Deserno and C. Holm, Molec. Phys., 100,2941 (2002). Theory and Simulations of Rigid Polyelectrolytes.
212. H. Van Keulen and J. A. M. Smit, J. Colloid Interface Sci., 170, 134 (1995). Approximate Analytical Solutions of the Poisson-Boltzmann Equation for Charged Rods in the Presence of Salt: An Analysis of the Cylindrical Cell Model.
213. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
214. G. S. Manning, Quart. Rev. Biophys., 2, 179 (1978). The Molecular Theory of Polyelectrolyte Solutions with Applications to the Electrostatic Properties of Polynucleotides.
215. D. Stigter, J. Colloid Interface Sci., 53, 296 (1975). The Charged Colloidal Cylinder with a Gouy Double Layer.
216. J. A. Schellman and D. Stigter, Biopolymers, 16,1415 (1977). Electrical Double Layer, Zeta Potential, and Electrophoretic Charge of Double-Stranded DNA.
217. D. Stigter, Biopolymers, 16, 1435 (1977). Interactions of Highly Charged Colloidal Cylinders with Applications to Double-Stranded DNA.
218. D. Stigter, J. Phys. Chem., 82, 1603 (1978). A Comparison of Manning’s Polyelectrolyte Theory with the Cylindrical Gouy Model.
219. D. Stigter and K. A. Dill, J. Phys. Chem., 97, 12995 (1993). Theory for Second Virial Coefficients of Short DNA.
220. S. L. Brenner andD. A. McQuarrie, Biophys. J., 13,301 (1973). Force Balances in Systems of Cylindrical Polyelectrolytes.
221. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, New York, 1994.
222. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, UK, 1995.
223. S. L. Brenner and V. A. Parsegian, Biophys. J., 14, 327 (1974). A Physical Method for Deriving the Electrostatic Interaction Between Rod-Like Polyions at All Mutual Values.
224. L. Dresner and K. A. Kraus, J. Phys. Chem., 67,990 (1963). Ion Exclusion and Salt Filtering with Porous Ion-Exchange Materials.
225. W. Olivares, T. L. Croxton, and D. A. McQuarrie, J. Phys. Chem., 84, 867 (1980). Electrokinetic Flow in a Narrow Cylindrical Capillary.
226. M. A. Lampert and R. U. Martinelli, Chem. Phys., 88, 399 (1984). Solution of the NonLinear Poisson-Boltzmann Equation in the Interior of Charged, Spherical and Cylindrical Vesicles. I. The High-Charge Limit.
227. H.-K. Tsao, J. Phys. Chem. B, 102, 10243 (1998). Counterion Distribution Enclosed in a Cylinder and a Sphere.
228. C. L. Rice and R. Whitehead, J. Phys. Chem., 69, 4017 (1965). Electrokinetic Flow in a Narrow Cylindrical Capillary.
229. S. Levine, J. R. Marriott, G. Neale and E. Epstein, J. Colloid Interface Sci., 52, 136 (1975). Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-Potentials.
230. S. L. Brenner and D. A. McQuarrie, J. Theor. Biol., 39, 343 (1973). A Self-Consistent Calculation of the Free Energy and Electrostatic Potential for a Cylindrical Polyion.
231. J. Bentz, J. Colloid Interface Sci., 90,164 (1982). Electrostatic Potential between Concentric Surfaces: Spherical, Cylindrical, and Planar.
References 343
232. V. Vlachy and A. D. J. Haymet, J. Am. Chem. Soc., 111,477 (1989). Electrolytes in Charged Micropores.
233. V. Vlachy and A. D. J. Haymet, J. Electroanal. Chem., 283, 77 (1990). Salt Exclusion from Charged and Uncharged Micropores.
234. V. Vlachy and A. D. J. Haymet, Austral. J. Chem., 43, 1961 (1990). Electrolytes in Micropores.
235. B. Jamnik and V. Vlachy, J. Am. Chem. Soc., 115, 660 (1993). Monte Carlo and Poisson-Boltzmann Study of Electrolyte Exclusion from Charged Cyindrical Micropores.
236. B. Jamnik and V. Vlachy, J. Am. Chem. Soc., 117, 8010 (1995). Ion Partitioning between Charged Micropores and Bulk Electrolyte Solution. Mixtures of Mono- and Divalent Counterions and Monovalent Co-Ions.
237. L. Yeomans, S. E. Feller, E. Sanchez, and M. Lozada-Cassou, J. Chem. Phys., 98, 1436 (1993). The Structure of Electrolytes in Cylindrical Pores.
238. L. Martinez, A. Hernandez, A. Gonzalez, and F. Tejerina, J. Colloid Interface Sci., 152, 325
(1992). Use of Variational Methods to Establish and Increase the Ranges of Application of Analytic Solutions of the Poisson-Boltzmann Equation for a Charged Microcapillary.
239. H. Van Keulen and J. A. M. Smit, J. Colloid Interface Sci., 151, 546 (1992). Analytical Approximations for Potential Profiles in Charged Micropores Originating from the Poisson-Boltzmann Equation.
Previous << 1 .. 148 149 150 151 152 153 < 154 > 155 156 157 158 159 160 .. 183 >> Next