in black and white
Main menu
Share a book About us Home
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Statistical analysis of mixture distribution - Smith A.F.M

Smith A.F.M Statistical analysis of mixture distribution - Wiley publishing , 1985. - 130 p.
ISBN 0-470-90763-4
Download (direct link): statistianalysisoffinite1985.pdf
Previous << 1 .. 90 91 92 93 94 95 < 96 > 97 98 99 100 101 102 .. 103 >> Next

Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. Ann. Math. Statist., 35, 1-20.
Robbins, H.. and Pitman, E. J. G. (1949). Application of the method of mixtures to quadratic forms in normal variates. Ann. Math. Statist., 20, 552-560.
Robertson. C. A., and Fryer, J. G. (1969). Some descriptive properties of normal mixtures. Skand. Aklur. Tidskr., 52, 137-146.
Rolph, J E. (1968). Bayesian estimation of mixing distributions. Ann. Math. Statist., 39, 1289-1302.
Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27, 832-837.
Rubin. 1., and Schwartz. S (1970). Runaway bounds for decision directed receivers. Proc. ConJ Decision and Control.
Ruhe, A. (1980). Fitting empirical data by positive sums of exponentials. SIAM J. Sci Stat
Comput., 1, 481-498.
Rushforth, N. B., Bennett. P. H., Steinberg, A. G., Burch, T. A., and Miller, M (1971)
Diabetes in the Pima Indians. Evidence of bimodality in glucose tolerance distributions
Diabetes, 20. 756-765.
Sacks, J. (1958). Asymptotic distribution of stochastic approximation procedures. Ann
Math. Statist., 29, 373-405.
Saleh, A. K. M. E. (1981). Decomposition of finite mixture of distributions by minimum chi-square method. Aligarh. J. Statist., 1, 86-97.
Samaniego, F. J. (1976). A characterization of convoluted Poisson distributions with applications to estimation. J. Amer. Statist. Assoc., 71. 475-479.
Sammon, J. (1968). An adaptive technique for multiple signal detection and identification.
In Pattern Recognition (Ed. L. N. Kanal), pp. 409-439. Thompson, Washington, D. C. Sandor, T., Sridhar, B.and Hollenberg, N. K.(!978). Multicxponential fit of data by using the maximum likelihood method on a minicomputer. Comput. Biomed. Res., 11, 35-40. Sanyal, P. (1974). Bayes’ detection rule for rapid detection and adaptive estimation scheme with space applications. IEEE Trans. Automat. Contr., AC-19, 228-231.
Schilling, W. (1947). A frequency distribution represented as the sum of two Poisson distributions. J. Amer. Statist. Assoc., 42, 407-424.
Schmidt, P. (1982). An improved version of the Quandt-Ramsey MGF estimator for mixtures of normal distributions and switching regressions. Econometrica, 50, 501 516. Schwartz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6, 461 464. Schweder, T. (1981). On the dispersion of mixtures. Personal Communication.
Sclove, S. C. (1977). Population mixture models and clustering algorithms. Commun.
Statist. A, 6, 417-434.
Sclove, S. C. (1983). Application of the conditional population mixture model to image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., PAMI-5, 428 433 Scott, A. J., and Symons, M. J. (1971). Clustering methods based on likelihood ratio
criteria. Biometrics. 27, 238-397.
Scudder, H. J. (1965). Probability of error of some adaptive pattern recognition machines.
IEEE Trans. Inform. Th., IT-11, 363-371.
Sen, N. (1922). Uber den Einfluss des Dopplereffekts aufspcktroskopische Feinstrukturen
und seine Elimination. Phys. Zeitschr, 23, 397-399.
Shaked, M. (1980). On mixtures from exponential families. J. R. Statist. Soc. B, 42, 192-
Shapiro, C. P. (1974). Bayesian classification: asymptotic results. Ann. Statist., 2, 763- 774. Shenton, L. R„ and Bowman, K. O. (1967). Remarks on large sample estimators for some
discrete distributions. Technometrics, 9, 587-598.
Sichel, H. S. (1975). On a distribution law for word frequencies. J. Amer. Statist. Assoc., 70,
542-541. u A
Silverman, B. W. (1978). Density ratios, empirical likelihood, and cot death. Appl. Statist.,
27 ^6 3 ^
Silverman, B. W. (1979). Some asymptotic properties of the probabilistic teacher. I ELL
Trans. Inform. TIi., IT-26, 246-249. . . „
Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. J. R
Statist. Soc. B, 43, 97-99. , , i,.rtl,i
Silverman, B. W. (1983). Some properties of a test for multimodality based cm ker
density estimates. In Probability, Analysis and Statistics (Eds. J. . • mfinivemtv
G. E. H. Reuter), pp. 248-259. LMS Lecture Notes No. 79. Cambridge University
Silvey, S. D. (1975). Statistical Inference. Chapman and Hall, London.
Silvey, S. D. (1980). Optimal Design. Chapman and Hall. London.
Si Ivey, S. D., and Tittcrington. D. M (1973). A geometric approach to optimal design theory. Biometrika, 60. 21-32.
Simar, L (1976). Maximum likelihood estimation of a compound Poisson process. Ann.
Statist., 4. 1200-1209.
Singer, R A.. Sea, R. G.. and Housewright, K. B. (1974). Derivation and evaluation of improved tracking filters for use in dense multi-target environments. IEEE Trans.
Inform. Th., IT-20, 423-432.
Skeliam. J. G. (1948). A probability distribution derived from the binomial distribution by regarding the probability of success as variable between sets of trials. J. R. Statist. Soc. B, 10. 257-261.
Skene. A M. (1978). Discrimination using latent structure models. In COMPSTAT1978 (Eds. L. Corsten and J. Hermans), pp. 199-204. Physica-Verlag, Vienna.
Previous << 1 .. 90 91 92 93 94 95 < 96 > 97 98 99 100 101 102 .. 103 >> Next