Books
in black and white
Main menu
Share a book About us Home
Books
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics
Ads

Statistical analysis of mixture distribution - Smith A.F.M

Smith A.F.M Statistical analysis of mixture distribution - Wiley publishing , 1985. - 130 p.
ISBN 0-470-90763-4
Download (direct link): statistianalysisoffinite1985.pdf
Previous << 1 .. 86 87 88 89 90 91 < 92 > 93 94 95 96 97 98 .. 103 >> Next

katti. S k , and Gurland, J. (1961). The Poisson Pascal distribution. Biometrics, 17, 527-538.
References
111
Kaufman, G. M., and King, B. (1973). A Bayesian analysis of nonresponse in dichotomous processes. ./. Amer. Statist. Assoc., 68, 670-678.
Kazakos, D. (1977). Recursive estimation of prior probabilities using a mixture. IKFF Trans. Inform. Th., IT-23, 203-211.
Kazakos, D„ and Davisson, L. D. (1980). An improved decision-directed detector. IEEE Trans. Inform. Th., IT-26, 113-116.
Kcilson, J., and Gerber, H. (1971). Some results for discrete unimodality. J. Amer. Statist.
Assoc., 66, 386-389.
Keilson, J., and Steutel, F. W. (1974). Mixtures of distributions, moment inequalities and measures of exponentiality and normality. J. Appl. Proh., 2, 112 130.
Kent, J. T. (1983). Identifiability of finite mixtures for directional data. Ann. Statist 11 984-988.
Khinchin, A. Y. (1938). On unimodal distributions (in Russian). Izv. Nauchno-lssled. Inst. Mat. Mekh. Tomsk. Gos. Univ., 2, 1-7.
Kiefer, J., and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Ann. Math. Statist., 27. 887-906.
Kiefer, N. M. (1978a). Discrete parameter variation: efficient estimation of a switching regression model. Econometrica, 46, 427-434.
Kiefer, N. M. (1978b). Comment on a paper by Quandt and Ramsey. J. Amer. Statist.
Assoc., 73, 744-745.
Kingman, J. F. C. (1966). The algebra of queues. J. Appl. Proh., 3, 285 326. Kocherlakota, S., and Kocherlakota, S. (1981). On the distribution ofr in samples from the mixtures of bivariate normal populations. Commun. Statist. A, 10, 1943 1946. Konstantellos, A. C. (1980). Unimodality conditions for Gaussian sums. IEEE Trans.
Automat. Contr., AC-25, 838-839.
Korn, G. A., and Korn, T. M. (1968). Mathematical Handbook for Scientists ami Engineers.
McGraw-Hill, New York.
Kornbrot, D. E. (1983). Binary mixture collections: cumulant methods for estimation of parameters and distribution type. Personal Communication.
Krikelis, N.J. (1977). Bayes decision rules for a finite mixed population. J. Statist. Comput.
Simul., 6, 11-18.
Krolikowska, K. (1975). Estimation of the parameters of the mixture of an arbitrary finite number of Poisson’s distributions. Z. Nauk. Politech. Lodz., 1, 17 23.
Kuliback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Statist.,
22, 79-86.
Kumar, K. D., Nicklin, E. H„ and Paulson, A. S. (1979). Comment on a paper by Quandt
and Ramsey. J. Amer. Statist. Assoc., 74. 52 55.
Lachenbruch,’P. A. (1975). Discriminant Analysis. Collier-Macmillan, London. Lachenbruch, P. A., and BrofTitt, B. (1980). On classifying observations when one
population is a mixture of normals. Biom. J., 22, 295 301.
Laird, N. M. (1978a). Nonparametric maximum likelihood estimation of a mixing
distribution. J. Amer. Statist. Assoc., 73, 805-811.
Laird, N. M. (1978b). Empirical Bayes methods for two-way contingency tables.
Biometrika, 65, 581-590. . ,
Lambert, D„ and Tierney, L. (1984). Asymptotic properties of maximum likelihood
estimates in the mixed Poisson model. Ann. Statist., 12, 1388 1399.
Larkin, K. P. (1979). An algorithm for assessing bimodality vs. ummodality in a univariate
distribution. Behav. Res. Melh. Instr., 11, 467 468. .
ee, A. F. S., and D’Agostino, R. B. (I976). Levels of significance of some two-sample tests
when observations are from compound normal distributions. Commun. Statist. A, -.
325-342.
References
Lee. A F. S.. and Gurland, J (1977). One-sample /-test when sampling from a mixture of normal distributions. Ann. Statist.. 5, 803-807.
Lehmann. E L. (1983). Theory of Point Estimation. Wiley, New York.
Lepeltier. C (1969). A simplified statistical treatment of geochemical data by graphical representation. Econ. Geol., 64. 538-550. l.cytham, k M. (1984). Maximum likelihood estimates for the parameters of mixture distributions. Water Resour. Res.. 20. 896-902.
Li. L. A., and Scdransk, N. (1985). Mixtures of distributions: a topological approach.
Typescript.
Lindgren. G. (1978). Markov regime models for mixed distributions and switching regressions. Seand. J. Statist., 5. 81-91.
Lindley, D. V.. and Smith, A. F. M. (1972). Bayes estimates for the linear model (with discussion). J. R. Statist. Soc. B, 34, 1-41.
Lindsay, B G. (1981). Properties of the maximum likelihood estimator of a mixing distribution. In Statistical Distributions in Scientific Work (Eds. C. Taillie et al.), Vol. 5, pp. 95-110.
Lindsay, B. G. (1983a). The geometry of mixing likelihoods: a general theory. Ann. Statist., 11, 86-94.
Lindsay, B. G. (1983b). The geometry of mixing likelihoods, part II: the exponential family.
Ann. Statist., 11, 783-792.
Lindsav, B. G. (1983c). Efficiency of the conditional score in a mixture setting. Ann. Statist., 11, 486-497.
Lingappaiah, G. (1975). On the mixture of exponential distributions. Metron., 33,403-411. Lipscomb, W. N.. Rubin, T. R., and Sturdivant, J. H. (1947). An investigation of a method for the analysis of smokes according to particle size. J. Appl. Physics, 18, 72-79. Little. R. J. A. (1978). Consistent regression methods for discriminant analysis with incomplete data. J. Amer. Statist. Assoc., 73, 319-322.
Previous << 1 .. 86 87 88 89 90 91 < 92 > 93 94 95 96 97 98 .. 103 >> Next