in black and white
Main menu
Share a book About us Home
Biology Business Chemistry Computers Culture Economics Fiction Games Guide History Management Mathematical Medicine Mental Fitnes Physics Psychology Scince Sport Technics

Statistical analysis of mixture distribution - Smith A.F.M

Smith A.F.M Statistical analysis of mixture distribution - Wiley publishing , 1985. - 130 p.
ISBN 0-470-90763-4
Download (direct link): statistianalysisoffinite1985.pdf
Previous << 1 .. 84 85 86 87 88 89 < 90 > 91 92 93 94 95 96 .. 103 >> Next

Palaeobot. Palynol., 23, 359-372.
Gottschalk, V. H. (1948). Symmetric bimodal frequency curves. J. Franklin Inst., 245, .4.
Cirannis. C. I . and Lott. J. A. (1978). A technique for determining the probability of
abnormality. Clin. Cltem.. 24. 640-651.
Greenwood. J A . and Hartley. H. O (1962). Guide to Tables in Mathematical Statistics.
Oxford Univ. Press.
Gregg. W D. and Hancock. J. C. (1968). An optimum decision directed scheme for Gaussian mixtures. IEEE Trans. Inform. Th., IT-14. 451-461.
Gregor. J. (1969). An algorithm for the decomposition of a distribution into Gaussian
components. Biometrics, 25. 79-93.
Gridgeman, N. T. (1970). A comparison of two methods of analysis of mixtures of normal
distributions. Technometrics, 12. 823-833.
Gumbel. E J. (1940). La dissection d'une repartition. Ann. Univ. Lyon, 3A, 2, 39-51. Gupta. A k... and Miyawaki, T. (1978). On a uniform mixture model. Biom. J., 20,631 -637. Gurland, J (1957). Some interrelations among compound and generalized distributions.
Biometrika, 44, 265-268.
Guseman. L. I- . and Walton, J. R. (1977). An application of linear feature selection to
estimation of proportions. Commun. Statist., A, 6, 611-617.
Guseman, L. F.. and Walton. J. R. (1978). Methods for estimating proportions of convex
combinations of normals using linear feature selection. Commun. Statist., A. 7, 1439—
Guttman. L. Duller. R.. and Freeman. P. R. (1978). Care and handling of univariate outliers in the general linear model to detect spuriosity—a Bayesian approach. Technometrics, 20. 187-193.
Flald. A. (1952). Statistical Theory with Engineering Applications. Wiley, New York.
Haid. A. (1960). The compound hypergeometric distribution and a system of single sampling inspection plans based on prior distributions and costs. Technometrics, 2,275—
Haldane. J B S. (1952). Simple tests for bimodality and bitangentiality. Ann. Eugenics, 16, 359-364.
Hall. P. (1981). On the non-parametric estimation of mixture proportions. J. R. Statist. Soc. B. 43. 147-156.
Hall. P.. and Heyde C. C. (1980). Martingale Limit Theory and Its Applications. Academic Press, New' York.
'Hall, P.. and Titterington, D. M. (1984). Efficient nonparametric estimation of mixture proportions. J. R. Statist. Soc. B. 46, 465-473.
Hall P.. and Titterington, D. M. (1985). The use of uncatcgorized data to improve the performance of a nonparametric estimator of a mixture density. J. R. Statist. Soc. B. 47, 155-163.
Hall, P.. and Welsh, A. H. (1983). A test for normality based on the characteristic function.
Biometrika. 70, 485-489.
Han, C.-P. (1978). Estimating means when a group of observations is classified by a linear discriminant function. J. Amer. Statist. Assoc., 73, 661-665.
Hand. D. J. (1981). Discrimination and Classification. Wiley, New York.
Harding, J. P. (1949). The use of probability paper for the graphical analysis of polymodal frequency distributions. J. Marine Biol. Assoc., 28, 141-153.
Hardy, G. H„ Littlewood, J. E., and Polya, G. (1952). Inequalities. Cambridge University Press.
Harris, C M (1983). On finite mixtures of geometric and negative binomial distributions.
Commun. Statist. A. 12, 987-1007.
Harris. D. (1968). A method of separating two superimposed normal distributions using arithmetic probability paper. J. Anim. Ecol., 37, 315-319.
Harris. H.. and Smith, C. A. B. (1949). The sib-sib age of onset correlation among individuals suffering from the same hereditary syndrome produced by more than one gene. Ann. Eugenics, 14. 309-318.
Harrison, P. J-. and Stevens, C. F. (1976). Bayesian forecasting (with discussion). J. R. Statist. Soc. B, 38, 205-247.
Hartigan, J. A. (1977). Distribution problems in clustering. In Classification and Clustering (Ed. J. van Ryzin). pp. 45-71. Academic Press, New York.
Hartigan, J. A., and Hartigan, P. M. (1985). The dip test of unimodality. Ann. Statist 11
Hartley, M. J. (1978). Comments on a paper by Quandt and Ramsey. ./. Arner. Statist
Assoc., 73, 738-741.
Hasselblad, V. (1966). Estimation of parameters for a mixture of normal distributions. Technometrics, 8. 431 -444.
Hasselblad, V. (1969). Estimation of finite mixtures of distributions from the exponential family. J. Amer. Statist. Assoc., 64. 1459-1471.
Hathaway, R. J. (1983). Constrained maximum likelihood estimation for a mixture of multivariate normal densities. Tech. Rep. 92, Dept. Math. Stat., Univ. S. Carolina, Columbia, S. C.
Hathaway, R. J. (1985). A constrained formulation of maximum-likclihood estimation for normal mixture distributions. Ann. Statist., 13, 795-800.
Hawkins, R. H. (1972). A note on multiple solutions to the mixed distribution problem.
Technometrics, 14, 973-976.
Heathcote, C. R. (1977). Integrated mean square error estimation of parameters.
Biometrika, 64, 255-264.
Helguero, F. de (1904). Sui massimi dellc curve dimofrichc. Biometrika, 31, 84 98. Hermans, J., and Habbema, J. D. F. (1975). Comparison of five methods to estimate posterior probabilities. EDVin Medizin and Biologic. 1/2, 14 19.
Previous << 1 .. 84 85 86 87 88 89 < 90 > 91 92 93 94 95 96 .. 103 >> Next